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Abstract

The cognitive, robotics language Indigolog provides a powerful notation for producing reasoning

agents in complex, dynamic domains. However it lacks certain features that would make it more

accessible, particularly in regard to syntax and program structure. The aim of this thesis is to

produce a new object-oriented formulation of Indigolog, to develop a compiler for this language,

and to ensure that it is faithful to the original specification and the underlying formal theory – the

Situation Calculus. This report endeavours to document the development, the research necessary

to produce it and the ultimate benefits that it can provide.
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Chapter 1

Introduction

Automated problem solving is one of the motivating forces in the field of Artificial Intelligence.

It is an attractive idea to simply provide a system with a problem specification and wait for it to

independently divine a solution via general purpose methods. However, the reality is that general

systems cannot naively handle the computational complexity of difficult problems.

There are many approaches for producing intelligent software in this climate, ranging from

abstract to very tailored solutions. Golog – a language based on first-order logic – is of the former

category, designed specifically for reasoning in diverse, dynamic domains. Golog addresses compu-

tational complexity by incorporating domain-specific knowledge into otherwise general systems, a

technique shared by cognitive robotics languages.

However, while Golog offers many nice features – including sophisticated reasoning – all existing

flavours lack appropriate abstraction of multiple agents, extensive communication protocols or

convenient debugging support.

The aim of this thesis is to produce a new variant of Golog that addresses these concerns so that

the program can increase development efficiency and accurately reflect more complicated scenarios

in our target iCinema applications. We intend this new version of Golog to exhibit the following

desired features:

• an ‘environment’ thread for maintaining global fluents and spawning autonomous agents as

child threads

• convenient agent communication protocols as language primitives

• groomed syntax and compiler error messages

• improved language efficiency via a dedicated, object-oriented virtual machine1

1We contrast this with an ‘interpreted interpreter’ as discussed later.
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This should result in a convenient way of producing diverse communities of agents, capable of

sophisticated and responsive interaction with each other and the external world. This is partic-

ularly favourable for our target domain of the UNSW iCinema – a dynamic environment where

several agents have to interact in real time with multiple humans.

The final program will then be evaluated in terms of the expressive power and development

speed of a series of test programs including:

• Canonical examples:

– Golog-elevator

– Wumpus world

– Grid world

• Call-centre (for communication)

• Logical inference examples

• Travel-agent bot (‘semantic web’-inspired)

Note that this thesis is targeted at the UNSW iCinema’s ‘Scenario’ project. Accordingly, the

existing Golog code produced over the 2008-2009 summer will also be ported for direct comparison

with previous Golog implementations.
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Chapter 2

Background

2.1 Situation Calculus

The Situation Calculus is a dialect of first-order logic that allows us to reason about actions in

dynamic domains. This is achieved by augmenting standard first-order logic with several additional

constructs:

• Situations – the history of ‘actions’ that have occurred and the current state of the universe1.

• Initial situation – s0, the initial state of the universe before any actions have occured.

• Fluents – situation-dependent2 predicates representing properties of the world. Fluents are

usually distinguished from other constructs by their form; they accept a situation as the final

argument: f(. . . , s)

• Actions – named terms with preconditions, used for affecting the current situation.

• Effect Axioms3 – axioms that define the result of performing an action; how an action modifies

fluent values and accordingly transitions one situation to another.

• do function – do(α[s], s)→ s′ which returns the situation that results from preforming action

α in situation4 s.
1That is, a snapshot of where we are and how we got there, in contrast to Reiter ’s definition where a situation

is precisely a sequence of actions and should be considered distinct from any notion of state.
2Technically fluents are either relational (truth depends on situation) or functional (value depends on situation).

Note that a relational fluent can be seen as a special case of functional fluent with a Boolean ‘type’, so we will
henceforth only consider functional fluents.

3Note that these are usually replaced with Successor-State Axioms – effect axioms that exploit the ‘common-sense
principle of inertia’ – to solve the Frame Problem.

4The notation α[s] is used to indicate that the action may have situation dependent arguments.
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• Do relation – Do(δ, s, s′) which maps the effects of a program δ in a situation s to a new

situation s′.

The result of these additions is a framework for describing a current situation s′ as a sequence

of actions α0 . . . αn acting on some initial situation s0:

s′ = do(αn, do(αn−1, do(. . . , do(α0, s0))))

Further, special axioms allow us to describe the preconditions for and effects of these actions

on fluents – situation-dependent predicates whose truth-value changes as the result of actions. We

can then use these constructs – along with external ‘exogenous’ actions – to reason about the

effects of actions in dynamic domains. That is, to plan a sequence of actions to achieve some goal

situation.

Note that a formal description of the effect axioms requires the status of every fluent to be

explicitly detailed, otherwise the truth value is not logically guaranteed to be known.

An example of this is the action drop. Performing this action modifies the world (situation,

since it is a sequence of actions that is extended by virtue of doing an action) and we cannot

know whether it has affected something else (such as whether the thing we dropped is now broken)

unless the resulting value of this fluent is provided. This is known as the frame problem. A

popular solution is to adopt the ‘common-sense principle of inertia’. That is, in first order logic

everything needs to be explicit, so an effect axiom has to identify what doesn’t change as well. A

successor-state axiom is distinguished from an effect axiom since it allows us to ‘leave out’ this

redundant information. This allows us to assume that a fluent remains unchanged after an action

if the successor-state axiom does not mention it. That is, our drop action should state whether

the object actually is broken, but since it says nothing regarding other fluents (like the colour of

the object) we can safely leave their values alone.

This is not the only solution to the frame problem, nor is it necessarily the best, since it relies

on an additional assumption that isn’t always valid (in physical robotics for example). Fortunately

though, this particular method turns out to be a natural way of expressing the effects of actions in

cases where a full description is unnecessary, such as in environments with well-defined mechanics

like the UNSW iCinema.

In addition to the do function for linking situations by executing actions, we also have a Do

relation for linking situations by executing programs (note capitalisation). Specifically, executing

program δ in situation s can terminate in s′. Note that this is a relation (as opposed to a func-

tion, which is single-valued) because the program may terminate in one of many final situations,

especially with nondeterministic operators.

4



The Do relation has been intuitively defined in the original specification of Golog[1] as follows:

Primitive and Sensing actions:

Do(α, s, s′)
def
= Poss(a[s], s) ∧ s′ = do(a[s], s)

Exogenous actions:

Do(α, s, s′)
def
= s′ = do(a[s], s)

Sequence:

Do(δ1; δ2, s, s
′′)

def
= ∃s′ Do(δ1, s, s′) ∧Do(δ2, s′, s′′)

Test:

Do(?(φ), s, s′)
def
= φ[s] ∧ s = s′

Non-deterministic branch:

Do(ndet(δ1 δ2), s, s
′)

def
= Do(δ1, s, s

′) ∨Do(δ2, s, s′)

Non-deterministic arguments:

Do(π(~x){δ(~x)}, s, s′) def
= ∃~x Do(δ(~x), s, s′)

Non-deterministic iteration:

Do(δ∗, s, s′)
def
= ∀P {

(∀s1P (s1, s1)) ∧ (∀s1, s2, s3) [P (s1, s2) ∧Do(δ, s2, s3) ⊃ P (s1, s3)]

} ⊃ P (s, s′)

That is, we consider the set of pairs of situations (s, s′) where executing δ zero or more times

transforms the situation from s to s′. The set is defined inductively:

• Base case: the pair (s, s) must be in the set for all situations s since this indicates zero

executions of δ

• Inductive step: if the pair (s1, s2) is in the set and performing δ in situation s2 transforms

the situation to s3 then zero or more executions of δ must be able to transition from s1 to

s3, so (s1, s3) must also be in the set

5



P (s, s′) can then be thought of as indicating that the transition from s to s′ exists and can be

achieved by some number of executions of δ, which corresponds to an intuitive view of what the

Kleene star should do.

We can now declare some imperative constructs in these terms:

If statements:

Do(if(φ){δ1}else{δ2}, s, s′)
def
= ndet (?(φ); δ1) ?(¬φ); δ2)

While loops:

Do(while(φ){δ}, s, s′) def
= (?(φ); δ)∗ ; ?(¬φ)

For loops:

Do(for(δinit;φ; δupdate){δ}, s, s′)
def
= Do(δinit;while(φ){δ; δupdate}, s, s′)
def
= δinit; (?(φ); δ; δupdate)

∗ ; ?(¬φ)

There is also an alternative semantics for the Situation Calculus in terms of trans and final

predicates, which this thesis project can be viewed as extending. This formulation was introduced

in a paper by De Giacomo, Lespérance and Levesque[2] which focused on interleaved execution

to provide concurrency in the Situation Calculus itself. Due to the interleaving style, the trans

predicates were constructed such that they mapped a program and a situation (as in the traditional

do function) to a subprogram (the remaining program after executing an initial segment) and a new

situation at that point. Thus the language constructs used in a program can be partially executed

and not completed until an entirely separate branch of computation is done beforehand. The level of

this interleaving is still controlled by the definition of the predicate, such that conditional constructs

– particularly if statements – execute the condition and the first part of the body atomically. This

allows simple implementation of semaphores and other concurrent tools. Alternatively, it also

means that thread safety often comes for free and explicit interleaving control is unnecessary.

The trans predicates are complemented by final predicates which indicate whether a program

has successfully completed in a given situation. These two terms can then be combined into

a larger system called Do2. The semantics of this new system have been proved equivalent to

those of the original Do specification for the Situation Calculus[2]. That is, Congolog faithfully

implements the Situation Calculus. This proof idea is the basis of our own argument that we have

implemented the Situation Calculus; specifically we will prove equivalence with Congolog ’s trans

and final semantics. The details of this argument will be discussed later.
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2.2 Short history of Golog

2.2.1 Features

Golog is a planning language with semantics defined by the Situation Calculus. However the details

of this implementation are conveniently abstracted away from user code. That is, the syntax of a

Golog program is entirely independent of situations, without losing the benefits of being based on

a formal theory of actions. It also introduces imperative constructs like if and while as convenient

syntactic sugar for the underlying logical representation.

Traditionally, every version of Golog has been implemented in Prolog, a popular logic-programming

language. This is a sensible approach since it offers several powerful features:

• Backtracking search

• Variable unification and pattern matching

• Extensive library support (for personal language extensions)

The original Golog interpreter [1] was only twenty lines of CProlog code, yet it facilitated a

cute (and now canonical) ‘elevator’ example. However this was largely its limit. Further extensions

since then have turned Golog into a viable robotics language. A rough summary of this progression

is:

• Congolog : ‘concurrent’ (interleaved) execution

• Indigolog : external interaction (sensing and exogenous actions), simple planning

• Readylog : stochastic actions and decisions5, decision-theoretic planning

5This was retrofitted into Indigolog over the 2008-2009 summer, however the implementation begged for a better
solution.
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2.2.2 Constructs

Indigolog offers several language primitives for developing programs, including some useful though

uncommon features such as Kleene star for non-deterministic iteration. The main instructions

include:

Construct Indigolog Code Description

Primitive action α α(~x) perform an action (if preconditions are sat-

isfied)

Sequence [δ1, δ2] perform a sequence of actions or other in-

structions

Test ?(φ) succeeds if tested predicate is true

Conditional if(φ, δ1, δ2) traditional if-then-else

Iteration while(φ, δ) traditional while loop

Procedure ρ Call ρ(~x) traditional procedure call

Procedure ρ Definition proc(ρ(~x), δ) traditional procedure definition

Nondeterministic iteration

(Kleene star)

star(δ) loop an undefined number of times

Nondeterministic choice of

action (ndet)

ndet(δ1, δ2) choose and perform either subprogram δ1

or δ2

Nondeterministic choice of

argument (π, or pick)

pi(ν, δ) choose some binding for variable ν and

substitute into δ

Interrupt interrupt(φ, δ) performs program δ if condition φ becomes

true

Search search(φ) determine a sequence of actions to execute

to achieve some goal
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2.2.3 Limitations

Despite these features, there are several major shortcomings of existing versions:

• Poor integration: While Prolog allows rapid prototyping, this is a double-edged sword since

it means a solution can be developed before other features (including syntax or efficiency)

need to be considered. The result is an interpreter that works, but is syntactically complex,

runs out of stack space and is virtually impossible to debug.

• Archaic syntax: Current syntax exploits existing language features (like lists for sequential

actions) resulting in verbose and distracting code. Prolog offers DCGs that could improve this

situation, though equivalent approaches exist in other major languages (such as boost::spirit

or yacc).

• Efficiency: Golog is interpreted by Prolog, Prolog is (generally) an interpreted language.

That is, Golog is ‘doubly interpreted’. This horrific inefficiency was recognised and led to

CML [3] – a Cognitive Modeling Language. However this alternative has diverged into mainly

animation-centric domains [4]. Alternatively, Prolog can be compiled, although this subverts

the convenience of an interpreted language without eradicating its overheads.

• Debugging: As mentioned above, Golog is written in Prolog (which has limited debugging

support, given its complicated execution) and is doubly interpreted. The result is a language

that cannot be debugged without running through interpreter code as well. Attempting to

trace through broken code in this environment quickly reveals itself as a bad idea.

• Multiple Agents: Indigolog introduced the necessary primitives for the interpreter to inter-

act with the world. However, there is little facility for properly abstracting multiple agents,

both in representation and in the communication routes this would necessitate.

It is the balance of these strengths and weaknesses that has inspired this thesis project.
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2.3 Cognitive Robotics Languages

The most prominent cognitive robotics tool is STRIPS – the Stanford Research Institute Problem

Solver [5] – which remains a major source of inspiration today, despite its age. Originally designed

for controlling their robot ‘Shakey’, it has since been applied to many planning and scheduling

tasks. It is based on Propositional Calculus – another logic-based alternative to the Situation

Calculus – and features a planner and theorem prover. Modern appropriations tend to focus on

only one of these two features, often depending on whether they are targeted at robotic control

(or some other dynamic domain). As a final note, STRIPS is technically for problem specification,

rather than a control language of itself.

One of the languages to come out of STRIPS is PDDL (Planning Domain Description Lan-

guage) which endeavours to be a standard encoding for classical planning tasks, or to express the

‘physics’ of a domain [6]. It was designed as a problem specification language specifically for the

AIPS 1998 planning competition; entrants bring their own planners and only have to modify the

interface to receive problem specifications in PDDL. In a broader sense it is hoped that PDDL

will encourage the ‘sharing of problems and algorithms, as well as to allow meaningful comparison

of the performance of planners on different problems’[6]. Interestingly, the main omission of this

language is ‘advice’ to the underlying planner – notes about preconditions or suitable actions in a

given context – which are generally necessary for effective reasoning. This ‘perverse neutrality’ [6]

is intended, since every planner now needs to extend the language to cope, but is open to do it in

whatever way they prefer.

PDDL also comes in several layers, the first being STRIPS planning itself. Successive layers add

additional language features including ADL6. It also sports universal quantification (though this

is syntactic sugar for what Golog also supports) and nicely distinguishes domains and problems

by certain keywords and by convention of storing them in separate files7. Further layers add new

functionality including functions, types and object-oriented-like type hierarchies. Many of these

features are missing in Golog and should be considered by this thesis.

Funge’s CML (as previously mentioned) is another alternative. This is significant since it

targets the main inefficiency displayed by many languages of this style – an interpreted interpreter

– by compiling code into pure Prolog. Despite this, it appears to have received little attention and

the code itself is no longer available from Funge’s website (though a copy can be obtained via the

6Note that effect axioms may have conditions (as in Golog) or be universally quantified. However, PDDL’s ADL
component is claimed to be no more expressive than Golog [7].

7Again, Golog is open to this convention since it simply requires importing a separate file. However we found
with the iCinema that the domain changed for different problems so the benefit was generally not pronounced
enough to warrant it.
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Wayback Machine as linked in the References section).

There are also several languages based on situation calculus-like theories such as Flux [8] (fluent

calculus) which was used to develop fluxplayer – the 2006 AAAI general game playing champion.

This significant success indicates the potential of these logic-inspired languages and hence of Golog

too.

Similarly, ‘action languages’ including the Causal Calculator [9] (non-monotonic causal logic)

exist, which focus on problems of ‘action and change’. These problems are often transition systems

that can be modelled as automata-like graphs. The Causal Calculator appears otherwise very

similar to Golog in terms of syntax and (Prolog-based) implementation.

An alternative system for robotic control is in the form of Reactive Action Packages (RAPs)

[10] which recognise that planning a sequence of robot actions is generally not sufficient – many

situations may occur that irrepairably interrupt the sequence. RAPs serve as ‘hierarchical building

blocks’ for creating plans that select an appropriate action at each point in time. This is done in the

presence of an execution monitor, thus avoiding the need to replan on failure. Interestingly, there

is a parallel between this and Golog ’s nondeterministic features: a Golog program can request the

interpreter to do one of two (possibly nested) streams of execution8. This is achieved by attempting

the first stream; if this fails then it tries the second. The result is that the interpreter ‘finds’ an

action that works, even if the world changes between calling and executing.

Nilsson (who was involved in STRIPS) has also produced an interpreter for Teleo-Reactive (T-

R) Programs that execute by dynamically generating ‘circuitry for the continuous computation of

the parameters and conditions on which agent action is based’ [11] to introduce ‘circuit semantics’

to program execution. The rationale is that control theory and circuits themselves are better at

dealing with continuous change than traditional computer science constructs like functions and

sequences. Yet continuous change is precisely what robots in dynamic domains must endure.

Finally, there are a number of programs based on the Beliefs-Desires-Intentions (BDI) model

of AI of which AgentSpeak [12] is a popular abstract formalisation. Specifically, AgentSpeak aims

to produce a formal model for dealing with BDI and to reconcile this with a desire for concurrent

agents working together to solve problems.

AgentSpeak has since inspired AgentSpeak(L) – a logic-based version similar to Congolog, al-

though not as ‘rich’ [13]. This has in turn led to open-source versions such as Jason which has

extended the language to include support for distributed agents, plan failure-tolerance and strong-

negation9 [14].

An alternative BDI implementation is the Procedural Reasoning System (PRS) [15] which

8This is a helpful feature inherited from Prolog.
9This enables it to handle both open-world and closed-world assumptions.
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integrates reactivity into traditional planning methods. This allows PRS -based agents to ‘survive

in highly dynamic and uncertain worlds’.

Jack is another BDI system. It features ‘teams’ for modelling social structures and coordinating

group behaviours as well as inter-agent coordination and resilience against plan failure. Incidentally

it is produced by the AOS Group, who have applied Jack to several international military products

including tactical analysis, training and autonomous control of vehicles10 [16].

10Jack successfully provided ‘autonomous vehicle management’ for a BAC1-11 airliner in 2007. AOS Group are
now committed to an unmanned stealth combat aircraft – the ‘Taranis’ – by 2010[16].
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2.4 Games

Although commercial games provide little disclosure of their techniques there are some internet

communities that give some insight into current industry methods: for example, AIGameDev.com

[17]. Currently there tends to be a focus on scripting engines – generally Lua or Python based

– even in large-scale games like World of Warcraft and Crysis. This is probably due to the

programming convenience it provides for tweaking parameters and controlling predetermined

storylines. Performance gains are generally made by delegating intensive routines to specific C++

implementations, as in Crysis.

Besides this, most game AI reduces to searching problems, so A∗, minimax/negamax and αβ-

pruning all claim popular usage.

Other standard artificial intelligence constructs like behaviour trees and finite state machines

also make regular appearances.

There is one notable exception where a successful, commercial game took inspiration from

a formal cognitive language: F.E.A.R (a fast-paced first-person shooter with very competitive

agents) is alleged to be largely based on STRIPS. However, the particular implementation is said

to have been heavily optimised to make planning worthwhile compared with a purely reactive

(but very responsive) agent. It is likely that this technology is uncommon due to the difficulty

of achieving target performance, along with a lower standard for agent intelligence. Despite this,

F.E.A.R presents a case where Golog-like languages can produce superior results, regardless of

their arguably more complicated representation or speed limitations.

Additionally, Readylog has been successfully interfaced with Unreal Tournament – another pop-

ular (though older) first-person shooter – to provide competitive players [18]. As with F.E.A.R, this

implementation was only effective after heavy optimisation, this time in the form of ‘precompiled

macros’ to speed up sections where repeated planning would throttle performance.

13



2.5 Agent Communication Frameworks

2.5.1 FIPA

FIPA – the Foundation for Intelligent Physical Agents – is the eleventh IEEE standards committee,

comprised of over 50 affiliated institutions including universities, telecommunication companies

and other prominent organisations. It endeavours to produce agent-oriented standards, with a

particular focus on agent communication [19]. The standards it has produced detail a convenient,

extensible format for message creation, passing and response. They also describe the concept of a

‘yellow pages’ for service discovery, where an agent can register its services on a publicly available

database. Other agents that require this service can then query the database to discover the service

provider and how to contact them.

2.5.2 OAA

The open-source alternative to FIPA is the Open Agent Architecture, which similarly defines a

flexible message format and a means of agent discovery. A major distinction is that OAA describes

a ‘blackboard’ server holding lists of tasks. Agents then subscribe to this blackboard and perform

listed tasks if they are able to.
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Chapter 3

Target Platform

3.1 Java

Java is a popular high level programming language. Java programs are written in a clear, C-like

syntax and compiled to Java bytecode – architecture independent files that are executed by a Java

Virtual Machine (JVM). This format allows for the Java ‘compile once, run anywhere’ paradigm,

making Java one of the most useful, portable and pervasive modern languages.

Internally, Java performs stack-based execution of bytecode programs, that is, operators like

iadd (add two integers) or invokevirtual (function call) push and pop data to and from a runtime

stack to achieve program execution. For example, to perform 3 + 5 we push the integer constants

3 and 5 onto the stack then perform the addition instruction, which pops the top two operands (3

and 5) performs the addition, and pushes the result, 8, back onto the stack:

. . .

⇒ push(3)⇒
3
. . .

⇒ push(5)⇒ 5
3
. . .

⇒ add()⇒
8
. . .

Table 3.1: Java stack transition for simple addition

Java functions are performed in the same way: an object reference (for non-static functions)

and any argument values should be pushed to the stack (in that order) and then the function call
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instruction is executed. For example, consider that we have a reference to a person object this

which has a method in Java syntax like:

String name(int i);

The corresponding stack activity would then be:

. . .

⇒ load(this)⇒
this
. . .

⇒ push(1)⇒ 1
this
. . .

⇒ this.name(int)⇒
“Jet”
. . .

Table 3.2: Java stack transition for function call

Note that the final stack snapshot contains the string “Jet”; this is the function return value.

In addition to the stack for operands we also have a direct-access memory system. Local

variables can be stored to and loaded from numbered ‘variable slots’. For example, we can load

the number 3.14 and store it into local variable 2:

. . .
slot 2 = . . .

⇒ push(3.14)⇒ 3.14
. . .

slot 2 = . . .

⇒ store(2)⇒
. . .

slot 2 = 3.14

Table 3.3: Java stack transition for storing a variable

We may then perform some arbitrary computation with the stack. After this we may need to

retrieve the value we stored, so we can load its value back onto the operand stack:

. . .
slot 2 = 3.14

⇒ load(2)⇒ 3.14
. . .

slot 2 = 3.14

Table 3.4: Java stack transition for loading a variable
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We can see that a variable slot’s value is undefined until it is assigned although most JVMs

will complain if you read it uninitialised. Also, the assigned value remains in the slot until it is

overwritten. Note that each function gets its own variable memory, so loading or storing with a

slot in one function will have no effect on any other functions.

Finally, the process of calling a Java function defines the first few memory slots within that

new function. For example to call Object’s .equals method we do the following:

Listing 3.1: invoking a virtual function in Jasmin

1 push Object

2 push Argument

3 i n v o k e v i r t u a l java / lang / Object / equa l s ( Ljava / lang / Object ; ) Z

where java/lang/Object/equals indicates the ‘equals’ method of the Object class, Ljava/lang/Ob-

ject; is the typename of the argument and Z is the return type (Boolean). Note that we push

on the Object first, followed by the function arguments (Argument). These will be stored in

local variable slots zero and one respectively of the new function. Additional local variables will

be stored in subsequent slots – part of the same memory system. This highlights the Java ‘call

convention’ which says that virtual (non-static) functions need to receive the ‘this’ reference first.

We have already seen this in the first example: loading the ‘this’ reference is actually achieved

with the Java mnemonic/Jasmin instruction:

aload 0

where the a in aload indicates a reference type and 0 indicates the variable slot. Of course, invoking

a static function does not require providing a ‘this’ reference. Function arguments (or locals if the

function does not accept arguments) will thus start at zero. Given this, it is best to consider all

arguments (including the ‘this’ reference) and local variables in the same way, since no distinction

is given in Java bytecode, Jolog or normal Java code itself.

3.2 Java Exceptions

Java exceptions are declared in a familiar try-catch statement. However the virtual machine needs

to be able to transfer execution from an arbitrary point in a try statement to its exception handler

(the catch clause). To facilitate this, the bytecode translates these structures into entries in an

‘exception table’ for each function definition:
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type from to with

java/lang/NullPointerException myTryBegin myTryEnd myCatch

jolog/FailedPreconditionException beginNdet endNdet failNdet

all here there anywhere

. . .

When the virtual machine executes a throw exception instruction, it looks up the first entry

in the exception table at the current scope with the corresponding type and instruction range. If

a matching entry is found then execution is transferred to the instruction specified in that entry,

otherwise the virtual machine breaks to the previous scope and tries again. If it repeats this

process until it runs out of functions then this corresponds to the entire program failing with an

uncaught exception.

Let us now consider the above exception table. If a NullPointerException is thrown between

the labels myTryBegin and myTryEnd in user code then the JVM will look up this table and

see that the first entry works. It can then transfer control to the first instruction after the label

myCatch. Note that the ‘type’ field of the exception table must contain a valid Java class. The one

exception to this rule is the keyword all, which instructs the JVM to ignore the exception type when

determining whether the corresponding entry matches the thrown exception (that is, it is sufficient

for the exception range to match; any arbitrary exception type will be accepted by the handler).

We can observe now that the third exception handler may also match our NullPointerException,

however, the JVM accepts the earliest matching entry, so the specific NullPointerException handler

will be used in preference to the all handler by virtue of its position in the table. This is actually just

a special case of the more general inheritance mechanism that these exception handlers support;

the first entry that matches may have a different type, but it can still match if it is a superclass of

the actual exception type. These two phenomena are familiar in normal Java code too: catching a

java/lang/Exception before a java/io/IOException ‘shadows’ the IOException – it will never

get called since the earlier more general exception is able to match first.

Java’s internal representation of exception handling code means that Jasmin assembly does

not include try-catch statements. Instead it requires that you explicitly state each exception entry

manually, in the form1:

.catch Type from start label to end label with handler label

1Note that start label and end label are labelled points in the assembly code defining a region of code where this
exception may occur and handler label is the address (label) to transfer execution to when ‘catching’ the exception.
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This structure allows a simple definition of a hierarchy of code regions, each of which performs

some task and returns or passes execution further down the exception table on failure. This was

essential for developing our model of nondeterminism and will be reintroduced later when we

discuss the details of this implementation.

3.3 Jasmin

Jasmin is a popular, open-source Java ‘assembly language’ with a convenient textual formulation

that closely mimics the Java classfile bytecode mnemonics. This makes it an ideal intermediate

language between Jolog and Java bytecode. Accordingly the Jolog compiler actually produces

Jasmin assembly files. The final task of converting this assembly language into runnable Java

classfiles is delegated to Jasmin.

Some number formats and character escape sequences are unimplemented in Jasmin. The

newer version Jasmin XT is much more comprehensive and behaves correctly with these inputs.

3.4 Datatypes

Type Range Syntax

Void V

Boolean {0, 1} Z

Byte 8-bit signed integer B

Short 16-bit signed integer S

Integer 32-bit signed integer I

Long 64-bit signed integer L

Char 16-bit unsigned Unicode C

Float 32-bit IEEE 754 single precision F

Double 64-bit IEEE 754 double precision D

References

Return address 32-bit unsigned reference not permitted

Class Reference Lpackage/classname;

Interface Reference Lpackage/interfacename;

Array Reference [type
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Note that references are to a type – possibly a reference type. For example a 3-Dimensional

array of Strings would appear as [[[Ljava/lang/String;

Methods also have a strict format:

package/name/classname/method(arguments)return

Note that the argument types are placed consecutively, without any delimiters.

Examples:

Java:
package java.io;

class PrintStream { void println(String); }
Jasmin: java/io/PrintStream/println(Ljava/lang/String;)V

Java:
package my.package;

class myClass { int foo(Object, int[], double); }
Jasmin: my/package/MyClass/foo(Ljava/lang/Object;[ID)I

Java:
package package;

class myOtherClass { int foo(Double, double); }
Jasmin: package/MyOtherClass/foo(Ljava/lang/Double;D)I

3.5 Jasmin XT Enhancements

The first version of Jasmin has since been extended with certain new features:

• absolute and relative offsets can be used in addition to labels as branch targets, local variable

visibility ranges and exception handlers

• .bytecode major.minor directive to set bytecode version in classfiles

• .inner directive for inner classes?

None of these are utilised by Jolog. However this new version is valuable for the improved stability,

particularly with encoding Unicode escape sequences.

20



Chapter 4

Jolog

Jolog is a cognitive, robotics language. Specifically it is a new object-oriented, Java-like formulation

of Golog. This is complemented by the Jolog compiler capable of compiling Jolog programs into

Java bytecode. These programs can then be run on any Java Virtual Machine (JVM) on any

platform.

This has many favourable implications:

• Jolog is extremely portable

• More familiar syntax1 accelerates development and removes many of the syntactic pitfalls of

previous Gologs2

• Easier debugging – most Golog-interpreter duties have been delegated to the Java Virtual

Machine, significantly reducing interpreter code to trace through. Further, Jolog programs

compile to pure Java bytecode, so they are compatible with existing-Java debugging tools.

Jolog is written in C++ using the Boost::Spirit parser library. Extensive use of meta-templates

allows a grammar resembling Extended Backus-Naur Form (EBNF) to be written directly in native

C++ code. Input files can then be directly parsed into tokens – atomic words, identifiers, literals,

etc. These tokens are then converted into Abstract Syntax Trees (ASTs) – unambiguous groupings

of tokens into more useful structures. The important information is then extracted from these trees

1We suggest that Java-like syntax is familiar to a broader audience than Prolog-like syntax.
2Particularly in regard to the declaration and use of Prolog variables and other ill-defined Golog-Prolog bound-

aries. My favourite problem arises because the Golog interpreter does not provide a variable scheme that is sufficient
in all cases, so the use of Prolog variables is essential for some complicated tasks. However because the interpreter
controls execution it may occasionally rerun a section of code. The problem then is that a Prolog variable may be
successfully bound on the first run, but then the same, bound variable will be reused in the next execution. The
rerun code is unable to complete now because it has no free variables, causing the program to silently fail. This
took a long time to discover.
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and reassembled into a secondary ‘meta’ tree of ‘constructs’: if and not nodes for example. These

constructs know what their final assembly code should look like and are responsible for ‘emitting’

their precise representation in Jasmin assembly code to the output file. Jasmin is a popular open-

source compiler from a simple assembly language to Java bytecode. Hence, translating from Jolog

to Jasmin and then to Java bytecode alleviates the need to produce binary Java class files (Jasmin

does this for us). Further, Jasmin is fairly pervasive in the Java compiler community, crediting

itself as ‘the de-facto standard Java assembly language’[20].

4.1 Constructs

We have previously seen how Indigolog constructs are written. We now briefly introduce the Jolog

versions. A longer discussion of their syntax and implementation is left for later chapters.

Construct Jolog Code

Primitive action α α(~x);

Sequence { δ1 δ2 }
Test ?(φ);

Conditional if(φ) { δ1 }[else { δ2 }]
Iteration while(φ) {δ}
Procedure ρ Call ρ(~x)

Procedure ρ Definition type ρ(~x) { δ }
Nondeterministic iteration (Kleene star) δ∗;

Nondeterministic choice of action (ndet) ndet(δ1 | δ2)
Nondeterministic choice of argument (π, or pick) pick(ν) {δ}

Internally Jolog actually considers the Sequence as a Scope. Furthermore it allows an arbitrary

number of component instructions, however, we present only the two element sequence here for

reasons of space and to ease of our proof later on. Note that Indigolog is guilty of the same

simplification although we suggest that it does not affect the expressiveness of the construct,

neither here or in Indigolog.
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4.2 Language Features

Jolog exhibits all of the core features of existing Golog languages including backtracking, pattern

matching for exogenous actions and non-deterministic execution. Jolog also introduces several new

features:

• Agent communication primitives

• Easier agent abstraction

• More familiar threading model3

• Ability to directly call native Java code, including any Java library

• Object-Orientation

There are some differences though. Function pattern matching – a distinctive feature of Prolog

– was inherited not so much because it was appropriate but because it was the easiest way to

implement procedure calls. A Prolog-like variable class has been implemented that could be used

for this purpose, however it is not currently activated and has to be completely monitored by the

user – including explicitly unbinding before reuse.

A similar omission is with backtracking functions. Prolog allows control to backtrack into

functions that have already completed. This feature has been reproduced in Jolog with some

effort. However the ability to define several functions and the compiler backtrack through each

one has not. This design decision relates to the idea of multiple functions – in Prolog each of these

‘procedures’ is actually a rule, so multiple definitions make sense. Further, eligibility of a match is

done on the name of a rule and its arity. This becomes much harder (or at least more restrictive)

when types are made explicit as in Jolog. However while the compiler will not do this for free

anymore, it can still be emulated via the ndet operator:

Listing 4.1: emulating Prolog-style alternative functions in Jolog

1 ndet ( func t i on1 ( argument ) ; | f unc t i on2 ( argument ) ; )

3Java thread constructs replace those available in Congolog. One could argue this is a step backwards in terms
of expressiveness – prioritised concurrency is probably simpler to manage in Congolog than Java. However we are
less concerned with concurrency within a single program or agent. Our focus is on more ‘industrial’ Java threads
(which are provided by the operating system in modern JVMs) capable of running many single-threaded agents
simultaneously. This model is certainly more appropriate for the iCinema.
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4.3 Object-Orientation

We used Indigolog over the 2008-2009 summer to develop agents for the UNSW iCinema. Sadly

these multiple-agent systems were developed within a single Indigolog program, partially to ease

distribution to the iCinema. More specifically, one execution had to control several agents at once.

While this was certainly possible, it also made the code murkier and introduced many errors. The

communication between agents in this setting was also better achieved by ‘cheating’ – agents could

inspect global state instead of asking other agents and storing an internal model of the world. This

thesis has emerged from a desire to isolate these individual agents into separate objects with their

own goals and knowledge about the world.

The reasons for producing an object-orientated Golog stem from the above scenario and can

be summarised as:

• Object-orientation provides a more intuitive mechanism for modeling our target domains.

• We get cleaner agent abstraction and better opportunity for agents to communicate properly.

• It is (in some senses) more efficient, since we get better code reuse, functionality inheritance

and smaller ‘knowledge bases’4.

Finally, we recognise that Java is an ideal platform for introducing this object-orientation:

• The JVM is designed to handle many objects with many classes.

• Java is a widely-known and widely-supported language, with an impressive back catalogue

of supporting libraries and extensions.

• Distribution of multiple agents and support code is simple via compressed .jar files – they

do not even need to be unpacked or recompiled.

• Java runtimes are available on almost every system, even amongst non-development home

computers.

4The term ‘knowledge base’ relates specifically to Prolog. In our case we would have smaller ‘fluent stores’ (which
will be introduced later). The basic intention is to have more agents with less fluents; less fluents means less values
– and less spurious values in particular – to search through and hence faster search times.
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Chapter 5

How Jolog works

Jolog seeks to delegate as much execution to the virtual machine as possible; a reaction to de-

bugging code in interpreted Golog languages. This means pure Java bytecode and no execution

monitor. Jolog code is hence compiled fairly directly: Jolog functions appear as Java functions

might. The distinction is in the additional features that Jolog provides, particularly fluents and

actions. These are given very lightweight infrastructure such that they do not introduce a signifi-

cant increase in bytecode size but still permit the behaviour expected from previous Gologs. The

implementation of these features is the subject of this chapter.

Golog consists of:

• Initial situation

• Action Theory1, Σ

• Program

• Exogenous actions (since Indigolog)

• Sensing actions (since Indigolog)

The liveness of Golog programs hinges on ‘trans’ statements – transitions from a sequence of

interpreted predicates to a new sequence representing the next state. The advantage of compiling

to Java bytecode is that this execution can now be handled entirely by the JVM.

Similarly, Golog programs determine whether they have completed – successfully or otherwise –

via ‘final’ statements, which update the notion of program completion just as the precise program

1The action theory incorporates several rules and axioms – including the unique name assumption – to overcome
many restrictions and inconveniences that first-order logic otherwise implies. It also more obviously includes a
specification of actions, each with preconditions, effect axioms and more.
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state is updated by trans statements. Java has two forms of completion: successful termination

after running all code and returning from the first function (usually main or run), or failure if

an unhandled exception – thrown by a failed action for example – forces premature completion.

Exceptions form an elegant method of replacing final statements and introducing backtracking

function calls to Java: invalid functions will fail, throw an exception back to the point at which

they were called and a successor function can be tried. If a function can be called at this choice

point then eventually it will be and execution will continue towards successful completion. If no

valid execution exists then the last exception will be uncaught and we will regress to an earlier

choice point. If no early handler exists then the program has no valid execution sequence – it has

failed – and so it will terminate, possibly with an unhandled exception from the first function.

Backtracking with exceptions is not as simple as this. In particular it requires a method of

saving and restoring ‘choice points’. The details of this implementation are discussed later in this

chapter as part of the section on nondeterminism.

Finally, Golog maintains a current data state as well (the situation): a collection of received

and performed actions that can be combined with the action theory to determine the value of

any fluent. In Indigolog this was achieved by simulating the effect of every received action in the

history on the initial value. This implementation was clearly a severe inefficiency, especially in

the presence of many actions and was exemplified by the fact that we committed to an action

immediately, so we might as well have updated the fluent directly. This was improved by ‘rolling’

the database forward (replacing the initial condition for a fluent with its value at a point in the

history and then clearing the history up to that point) but it remains less effective than a simple

lookup of a local variable. In Jolog we take a compromise: all fluents are stored in the FluentStore

– an object with an internal HashMap for fast lookup of fluents. Fluent updates are commited to

immediately and are stored and retrieved via short function calls. The FluentStore is also written

in higher-level Java code (as opposed to hand-written assembly) so it can be better used for harder

tasks (pick, search). However it also represents our situation (the collection of fluent values), an

integral component to the implementation of the Situation Calculus.
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5.1 Overall System

The Jolog compiler undergoes several distinct phases to produce the compiled Jolog file. The brief

overview appears as:

Figure 5.1: Phases of compilation

In more detail: a source file is opened and given to the boost::spirit parse ast function, which

parses this file and creates an abstract syntax tree (AST) from the resulting tokens. That is, a tree

containing substrings from the initial file in a hierarchy that groups grammatically related tokens

together. We then disassemble this tree and use the relevant pieces to create a tree of language

constructs, a ‘Jolog Construct Tree’ (JCT). That is, if the AST holds something like the following:

ID: if statement, Value: <if>, Children (3)

ID: postfix, Value: <.>, Children (2)

ID: identifier, Value: <s>, Children (0)
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ID: postfix, Value: <(>, Children (2)

ID: identifier, Value: <equals>, Children (0)

ID: cast, Value: <(Object) "password">, Children (2)

ID: type, Value: <Object>, Children (0)

ID: string literal, Value: <password>, Children (0)

ID: scope, Value: <{>, Children (6)

ID: local variable, Value: <String exclamations;>, Children (2)

ID: type, Value: <String>, Children (0)

ID: identifier, Value: <exclamations>, Children (0)

ID: local variable, Value: <//do it with a for l ...>, Children (2)

ID: type, Value: <int>, Children (0)

ID: identifier, Value: <i>, Children (0)

ID: for statement, Value: <for(i=0; i<2; i=i+1) ...>, Children (7)

...

Then this sub-AST will produce a corresponding if node in the JCT:

Figure 5.2: Example Jolog construct subtree
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This if node would form part of a larger tree of constructs – hence a construct tree – with an

Agent node as the root. Once this tree is finalised we can ‘emit’ the tree – write its corresponding

assembly to a file. The advantage of this method is that each individual construct need only know

a small amount of assembly to achieve what it needs to, yet the overall system is still capable of

complex computation. In this case, the root Agent would emit necessary class initialisation, the

constructor, then delegate definitions of each of its functions to child Function nodes. These will

in turn emit a function prototype and then delegate the specifics of its body to the individual

constructs it contains, such as scope nodes2, if nodes, function call nodes, etc.

The final stage of compilation is achieved by the external Jasmin compiler. This is a third-

party Java program that accepts a file – assembly code produced by the Jolog compiler – and

produces a corresponding Java classfile.

5.2 Boost::Spirit

Spirit is a parser framework distributed as part of the boost family of C++ libraries. It exploits

C++ metatemplates and operator overloading to allow users to write grammars in a format closely

resembling extended Backus-Naur form. The result is C++ code that looks like the following:

Listing 5.1: excerpt from JologGrammar.h

1 using namespace boost : : s p i r i t : : c l a s s i c ;

2

3 class JologGrammar : public grammar<JologGrammar> {
4 public :

5 template <typename ScannerT>

6 class d e f i n i t i o n {
7 public :

8 d e f i n i t i o n ( JologGrammar const& s e l f ) {
9 j o l o g f i l e

10 = ! j o l og package

11 >> ∗ j o l o g im po r t

12 >> ! j o l o g a g e n t

13 >> ( end p | ( lexeme d [ +anychar p ] [ s e l f . r epo r t ( f i l e t a g ) ] >> nothing p ) )

14 ;

15

2Scope in Jolog corresponds to ‘sequences’ in previous Gologs.
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16 j o l o g a g e n t

17 = ∗ p r e f i x >> s t r p ( ” agent ” )

18 >> ( typeName | e r r o r [ s e l f . r epo r t ( type tag ) ] )

19 >> ( ∗( implements | extends )

20 >> no node d [ ch p ( ’{ ’ ) ]

21 >> ∗( j o l o g a g e n t c o n t e n t s )

22 >> no node d [ ch p ( ’} ’ ) ] )

23 | e r r o r [ s e l f . r epo r t ( agent tag ) ]

24 ;

25 // a d d i t i o n a l r u l e s removed f o r b r e v i t y

26 }
27 ru le<scanner t , pa r s e r tag<f i l e t a g > > const& s t a r t ( ) const {
28 return j o l o g f i l e ;

29 }
30

31 private :

32 Ident i f ierGrammar i d e n t i f i e r ;

33

34 ru le<ScannerT , par s e r tag<f i l e t a g > > j o l o g f i l e ;

35 ru le<ScannerT , par s e r tag<agent tag> > j o l o g a g e n t ;

36 } ;

37 } ;

JologGrammar.h defines our top-level rule (jolog file), so it also provides an interface function,

parseString, for use by the compiler frontend. This function takes an input string (from a Jolog

source file) and the name of the file. This information is then converted into an iterator range

and passed to a boost::spirit utility function ast parse which parses the input file and produces an

abstract syntax tree. Note that we use a special iterator type ‘position iterator’ so that nodes in

the AST contain position information (filename and line number) which is essential for producing

useful error messages.

The Boost::spirit parsing routine can be invoked with code equivalent to:

Listing 5.2: excerpt from JologGrammar.h

1 typedef p o s i t i o n i t e r a t o r <const char∗> i t e r a t o r t ;

2 typedef n o d e i t e r d a t a f a c t o r y<int> f a c t o r y t ;

3
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4 t r e e p a r s e i n f o<i t e r a t o r t , f a c t o r y t> par s eS t r i ng ( const char∗ s ,

5 s t r i n g f i l ename ) {
6 i t e r a t o r t begin ( s , s+s t r l e n ( s ) , f i l ename ) ;

7 i t e r a t o r t end ;

8 SkipGrammar sk ip ;

9 return as t pa r s e<f a c t o r y t >(begin , end , ∗ this , s k ip ) ;

10 }

5.3 Type and Error Checking

The lack of type or error checking in Indigolog allowed many trivial errors to manifest into large de-

lays in development. The desire to address this problem helped inspire this thesis. The complexity

of this task means that it is spread across several phases of the compilation process. Firstly, error

checks need to clearly indicate simple syntactic errors during parsing so that a user can produce

a file that matches the grammar. Once the input file is of this standard it can be parsed into an

AST and more sophisticated reasoning can be achieved, particularly with respect to type and logic

errors.

Boost::spirit allows easy definition of grammars in a fairly intuitive format, but this assumes

a correct input. Unfortunately even a minor syntactic error may simply not match the grammar

and so boost::spirit will get upset and fail with no indication of what is wrong. Worse is that

little facility is provided to report on problems as they occur. This was somewhat of a problem

in Indigolog and was a motivating force for this thesis, so a solution of some kind was essential.

The adopted approach is to use spirit ’s ‘semantic actions’ – which allow data to be collected and

sent to an error-checking function during parsing – and empty parsers to catch boundary cases.

For example, a missing semicolon after an expression statement triggers the last branch of the

statement rule:

Listing 5.3: statement rule from StatementGrammar.h

1 statement

2 = jump statement

3 | l o c a l v a r i a b l e d e f i n i t i o n

4 | i f s t a t e m e n t

5 . . .

6 | scope

7 | ! e xp r e s s i on >> ( no node d [ ch p ( ’ ; ’ ) ] )
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8 | ((+( alnum p − ’} ’ ) ) [ s e l f . r epo r t ( exp r e s s i on s t a t ement tag ) ] )

9 ;

A missing semicolon will result in none of the subrules matching, yet the statement grammar is used

where a statement is required (and no alternative will suffice). That is, the input does not match the

grammar. To combat this, we introduce a final ‘error’ rule that will match when all else fails. This

rule takes any trailing alphanumeric characters (via the alnum p parser) and reports them to the

user. This reporting procedure is complicated by self-imposed requirements that it write to a given

output stream and that it modifies a flag to indicate failure during parsing. Thus a special functor

is created by the report(expression statement tag) function. The collected characters are then given

to this functor and complemented with the tag type (in this case expression statement tag which is

used to indicate a missing semicolon to the error system) and the current line number to produce

a useful error message.

Inputs successfully matching the grammar are then translated into the ‘Jolog Construct Tree’

as mentioned above. This provides another opportunity to detect illegal input. For example, when

the compiler receives an ‘if’ node in the AST it will begin constructing an if node in the JCT.

This involves looking at the children of the AST node. The first child is compiled into a Boolean

expression and is used as the if condition. If there are no children then the compiler prints an

error to the user complaining that the definition is incomplete. Similarly if there are too many

children then the compiler complains that it does not know what to do with the trailing code.

Finally, error checking is also performed during the code generation phase. The if construct,

for example, stores up to three children: the ‘condition’, a ‘then’ body and an ‘else’ body. The

type of the condition node is then queried before emitting to ensure it will give a Boolean result.

This type of check is essential if we want useful feedback since the Java Virtual Machine will

detect the problem if we do not. However the JVM is also far more cryptic in its error messages.

Note also that these checks must wait until this late stage because many constructs (such as

function calls) won’t know their type until everything is defined. The best example of this is a

function call to a user function. The function has to be created and register itself with the current

NamespaceResolver before the function call can determine what type it will get back.
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5.4 Fluents

Fluents are achieved via a ‘fluent store’ – a dedicated object that holds all fluents and provides

an interface for loading and storing fluents. Each Jolog agent has a private class variable called

jolog fluent store which holds its own private fluent store. On startup each agent creates and

initialises a new fluent store with the initial fluents specified by the initialisation axioms in the

Jolog file. This fluent store is then saved into the dedicated class variable.

As mentioned earlier, fluents are accessible anywhere within the parent agent. However they

may be modified only by actions. This is enforced by the Jolog compiler. The update process is

quite simple though – calling an action α executes code equivalent to:

Listing 5.4: Jolog successor state axiom pseudocode for action α

1 for each f l u e n t f :

2 i f ac t i on α mod i f i e s f :

3 i f pre cond i t i on ho lds :

4 e f f e c t axioms are eva luated

5 a s s i g n / ove rwr i t e va lue o f f

where precondition is an arbitrarily complex Boolean expression.

We now consider the value of a fluent in a given situation. First note the role of the situation

is to define the value of fluents – it has no other function – and modern Gologs actively enforce

this restriction. This means that you cannot query the contents of the situation, just the current

value of a fluent. This story is only marginally complicated by allowing execution to backtrack.

Under these circumstances, we essentially remove the most recent action from the situation.

Updating the fluent store can be observed separately to the semantics of the language itself.

Accordingly we present an intuitive argument of equivalence with the Situation Calculus, starting

with the case without backtracking, then presenting an argument for extending this implementation

to handle situation regression.

As a final note, we observe that the fluent store is implemented as a map of Java Objects –

reference types unable to represent primitive types like ints. To combat this restriction, Jolog per-

forms implicit behind-the-scenes conversion from any primitive type to its corresponding reference

type and back when loading and storing fluents of primitive type. We will henceforth assume that

internal type errors will not occur, particularly those associated with an artficial conflict between

primitive and reference types.
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5.4.1 Without Backtracking

We start with an assumption about target applications:

Assumption 1: The target applications of Jolog are well-defined virtual worlds3.

This means that the closed world assumption is a convenient logical presence since it allows a

simple (and in our case intuitive) solution to the frame problem – the world is already fully defined,

so the absence of an effect axiom for a particular fluent-action pair simply means that action does

not affect that fluent.

Assumption 2: We are informed of exogenous actions having taken place; they have already

changed the world, so these actions cannot be backtracked4.

We first consider the normal ‘no backtracking’ case and later discuss some details of a hypo-

thetical implementation where actions are allowed to backtrack. To this effect we examine our own

implementation, where the fluent store overwrites fluent values so it only stores fluent bindings for

the current situation.

Assumption 3: We now accept Reiter’s specification of a situation. Specifically, it is a se-

quence of actions such that if do(α, s) = do(α′, s′) then α = α′ and s = s′. To this end we consider

actions as name-timestamp pairs.

Assumption 4: The action theory Σ contains successor state axioms (for each action α, fluent

f and value v) of the form:[
f(do(α, s)) = v

]
≡
[(
Pf (α, s) ∧ effect(α, s) = v

)
∨
(
f(s) = v ∧ ¬Nf (α, s)

)]
We are aiming to eliminate the situation term, so we will use Assumption 3 to convert situations

– sequences of states – into sets ordered by timestamp. Note that by Assumption 4 these elements

should be unique. Now, for i ∈ [0, n] if we have actions αi (where i indicates relative timestamp

3Specifically the UNSW iCinema or any other virtual arena with fully-defined world rules, like a computer game
4In fact, this holds for primitive actions too – they may modify fluents which are later sensed externally. Indigolog

and hence Jolog both prohibit backtracking of any action for this reason.
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ordering) then:

do(αi, si) = si+1

〈do(αi, si)〉 = 〈α0, α1, . . . , αi〉

Pf (α, s) = conditions which make f take value v under action α

¬Nf (α, s) = conditions under which fluent f is not updated when executing α

f(s) = value of fluent f in the Situation Calculus for situation s

load[f, 〈αi, . . . , α0〉] = value of fluent f in the fluent store after executing actions α0, . . . , αi

where 〈x〉 indicates an ordered set; in this case the situation is converted to a set of elapsed actions

ordered by timestamp.

Theorem: Jolog maintains the same fluent values as the Situation Calculus. That is, given a

sequence of actions α0, . . . , αn, an action theory Σ and a Jolog program δ:[
Σ |= f(do(αn, do(αn−1, . . . , do(α0, s0) . . .))) = v

]
iff

[
δ |= load[f, 〈α0, . . . , αn〉] = v

]
where v is the current value for fluent f in the respective situation.

Proof: we verify this claim by induction over the length of actions.

Base case: Our base case is when no actions have occurred (the initial situation). Because we

initialise the fluent store with all user-specified initial values, we can observe that:

v = initial value of fluent f

Σ |= f(s0) = v by definition

δ |= load[f, 〈〉] = v by pseudocode

∴

[
Σ |= f(s0) = v

]
iff

[
δ |= load[f, 〈〉] = v

]
So the theorem is correct in the initial situation.
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For the inductive step we assume that the theorem holds for k actions:[
Σ |= f(do(αk−1, do(. . . , do(α0, s0) . . .))) = v

]
iff

[
δ |= load[f, 〈α0, . . . , αk−1〉] = v

]
We now prove true for k + 1 actions. This is done by cases:

Case 1: action αk does not affect fluent f in situation sk so ¬Nf (αk, sk) holds. Our pseudocode

indicates that the fluent store will not be modified, since the particular precondition for fluent f

does not hold.[
Σ |= f(do(αk−1, do(. . . , do(α0, s0) . . .))) = v

]
iff

[
δ |= load[f, 〈α0, . . . , αk−1〉] = v

]
by hypothesis

however

[
load[f, 〈α0, . . . , αk−1〉] = v

]
≡
[
load[f, 〈α0, . . . , αk〉] = v

]
by pseudocode

similarly

[
f(do(αk−1, do(. . . , do(α0, s0) . . .))) = v

]
≡ f(sk) = v by successor state axiom

∴

[
Σ |= f(do(αk, do(. . . , do(α0, s0) . . .))) = v

]
iff

[
δ |= load[f, 〈α0, . . . , αk〉] = v

]

Case 2: action αk does affect fluent f , so Pf (αk, sk) holds. In this case our pseudocode will

ignore the previous value and simply overwrite the fluent with v′ = effect(αk, sk), thus:[
Σ |= f(do(αk−1, do(. . . , do(α0, s0) . . .))) = v

]
iff

[
δ |= load[f, 〈α0, . . . , αk−1〉] = v

]
by hypothesis[

δ |= load[f, 〈α0, . . . , αk〉] = v′
]
≡ effect(αk, sk) = v′ by pseudocode[

Σ |= f(do(αk, do(. . . , do(α0, s0) . . .))) = v′
]
≡ effect(αk, sk) = v′ by successor state axiom

∴

[
Σ |= f(do(αk, do(. . . , do(α0, s0) . . .))) = v′

]
iff

[
δ |= load[f, 〈α0, . . . , αk〉] = v′

]

Hence by induction, Jolog maintains the situation in a state equivalent to the Situation Calculus.

As a final note, we observe that the Situation Calculus incorporates situations; traditional

Gologs abstract this from user code while maintaining it internally. Jolog, however, legitimately

abstracts situations away entirely.
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5.4.2 With Backtracking

Out of all Gologs, Jolog is closest to Indigolog. This is particularly true in regard to actions; an

action may have an effect on the world which cannot be undone and accordingly both languages

refuse to backtrack actions and hence fluents. However while we may not allow this behaviour, we

do present a potential avenue for introducing it to Jolog.

First recognise that we still need not remember situations; we just need to ensure we can

potentially regress the fluent values. To this end, we extend the fluent store to act as a version-

controlled repository of fluent values. Actions have the effect of introducing a new ‘version’ of

fluents while backtracking reverts this value to the previous version (and forgets the top-most

version). We make this implementation more efficient by only storing deltas between versions

(just as a normal version control system would). When looking for the value of a fluent, we

consider the most-recent version and then look progressively further back until we find a binding

or we run out of versions (in which case the fluent does not exist). Note that we could detect this

at compile time for some fluents. However the potential for unknown, dynamically created fluents

necessitates at least some detection at runtime.

This approach is sufficient for fluents that do not exist. There is no point in optimising the error

case: it shouldn’t happen under normal circumstances. However it may prove to be too inefficient

for fluents that have not been used recently – constantly reloading them requires digging further

and further down the version stack. We propose two alternatives to address this issue:

• Rolling the database: we cap the version stack size at some fixed value to prevent it diverging

to some unreasonably large depth. If the stack exceeds its limit, then the final value of each

fluent is calculated and replaces the initial values. The stack can now be cleared without

losing fluent information. Note that this approach prevents unlimited backtracking – the

sequence information defining previous states has been lost. This method is adopted in

Indigolog despite this restriction5.

• Caching: when loading a fluent that is not referenced in the most recent version, we look for

its value down the entire stack of versions, as before. We then add this value to the most

recent version providing faster repeated access.

We make two small assumptions in this new environment: a) if we regress beyond the first

version then the fluent doesn’t exist, b) if we backtrack beyond the first version then we have

backtracked beyond the initial state and our program should fail.

5Interestingly, the deficiencies of this approach are largely cancelled by assumption 1 (above) and so it is rarely
a problem.
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5.5 Actions

Jolog provides three distinct types of action, each with a specific purpose:

• primitive actions – for general modification of fluents

• exogenous actions – notification of a change in global state, used for updating fluents that

define an internal model of the world

• sensing actions – for querying the state of an external agent or system

Primitive actions in Golog behave similarly to a normal function call. These semantics have

been reproduced in Jolog. Exogenous and sensing actions are a little more complicated and are

treated slightly differently in Jolog to previous Gologs. In particular, exogenous and sensing

actions need to interact with external systems – other classes or agents, files, streams, sockets,

etc. As such a simple function call is no longer sufficient. Strings present the most intuitive

method of allowing this interaction. However this unnecessarily restricts the information that can

be shared between agents. To this end we introduce ‘messages’. When ‘calling’ an exogenous

action the sender now forwards strings of data – as well as numerical types or serialised classes

– to the target agent (possibly itself) through an output stream. A new jolog.Message class

has been added to assist this process and to allow additional metadata to be attached, such as a

timestamp, information about the sender or more sophisticated features like message ontologies

that are required for universal agent communication. The content of this message is then matched

against a vector of regular expressions. If one of these patterns matches, then the corresponding

action (function) is triggered. Note that all Jolog actions are functions, but the expected calling

conventions vary between the different actions to reflect more common and intuitive usages.

Another distinction is in the relation between exogenous and sensing actions and their return

values. These two action types are intended to be related in multiple-agent systems. For example,

if agent1 wants to know how agent2 is feeling then it can fire a sensing action targeted at agent2.

This action will in turn send a message which is received by the exogenous action handler in agent2.

If this matches an exogenous action pattern then agent2 will run the corresponding action body.

At this point the exogenous action (may) send a message back to agent1. Agents can effectively

sense, inform and otherwise communicate under this model.

At this point it may be helpful to cement our definition of return values. Firstly, primitive

actions do not return – they are an indication (usually to ourself, though other classes are permitted

to call our primitive actions if that is considered useful) that some action should occur, we do not
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care what happens subsequently6. Exogenous and sensing actions however are linked to streams,

so this is the target of their return values. An exogenous action is triggered by a read on the input

stream, the return statement is a response to calling this action. It may be as simple as sending

“ok.” back to the caller to indicate that an action has been successfully updated, or it may be the

value of a fluent if this exogenous action is defined like a ‘getter’ function. Sensing actions behave

in the opposite way: they trigger a message by writing to a stream. These actions then wait to

read in a response back off this stream. The response can then be used inside the sensing action

to update internal fluents. Finally, we confess that this discussion of ‘streams’ is actually achieved

via interaction with our parent ‘environment’. The environment acts like a router to our system:

it reads in sensing requests and distributes the message to the correct agent via a function call

to this agent’s receiveExog function. This function then chooses which exogenous actions to run

following the above procedure. Finally, the result is returned by receiveExog to the environment

which performs the actual send to the original caller. An analogous process is invoked for initiating

sensing requests.

5.6 Non-Deterministic Execution

Prolog provides a powerful backtracking search mechanism as part of its function call semantics

– at each ‘choice point’ the interpreter will select the first matching function definition (from

potentially many matching definitions) and run it. If this function succeeds then it returns and

execution continues normally. If the function fails for some reason (such as an unsatisfied action

precondition, assertion or ‘test’ ?(condition)) then the interpreter will backtrack and choose an

alternative function definition in the hope that it is better suited to the current situation. The

result is that the interpreter eventually selects a path through ‘execution space’7 such that the

program completes successfully.

This is an iconic and often useful feature of Prolog and hence Golog. Accordingly it should be

integrated into Jolog. This has been achieved with the use of Java exceptions.

6Unless the precondition does not hold, in which case the action will throw an exception. However this back-
tracking is an internal feature – primitive actions do not return as far as user code is concerned.

7Provided such as a path exists.
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Figure 5.3: Prolog backtracking model

Every Jolog function, action and nondeterministic operator (pick, ndet and kleene) threatens

to throw a JologPreconditionException if it fails for any reason, such as an unsatisfied precondition

or a contradiction in program logic. This is complemented with exception handlers around each

function and action call and these same nondeterministic operators (pick, ndet and kleene). The

result is that a program may call an action that cannot be satisfied, an exception will be thrown

and the program will regress to the last choice point – the last exception handler – which will then

attempt any secondary actions or functions. If no other options are available then the program will

throw a new exception and regress further. This process of progression and regression emulates

Golog’s Prolog-style function semantics and allows user programs to ‘succeed’ (reach the end of

their program) or ‘fail’ (throw exceptions and regress beyond the starting point) as we expect.

Note that when producing assembly for exception handlers Jasmin accepts a special keyword

any in place of a normal catch type. In this case the exception table entry will inform the JVM that

the type of the thrown exception is not important and to only consider the location in program

code that the exception was thrown from. This keyword is used by all Jolog exception handlers and

allows Jolog ’s nondeterministic operators to replace the traditional Java try-catch statements. For

example, if the JVM fails to open a file then it will throw an IOException which would normally

need to be caught:
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Listing 5.5: Java code for opening a file

1 try {
2 Fi le InputStream f i s = new Fi leInputStream (new F i l e (filename ) ) ;

3 . . .

4 f i s . c l o s e ( ) ;

5 } catch ( FileNotFoundException e ) {
6 System . out . p r i n t l n ( e . getMessage ( ) ) ;

7 } catch ( IOException e ) {
8 System . out . p r i n t l n ( e . getMessage ( ) ) ;

9 }

However, in Jolog we can replace this with:

Listing 5.6: valid Jolog code for opening a file

1 ndet ({ Fi leInputStream f i s = new Fi leInputStream (new F i l e (filename ) ) ;

2 . . .

3 f i s . c l o s e ( ) ;

4 } | System . out << ”IO Error ” << endl ; ) ;

5 cut ;

Note that the nondeterministic operators are not a complete replacement; Jolog uses exceptions

for control flow and for providing human debuggers with some indication of where failures occur.

The above Java code gives explicit in-code access to the exception so its error message can be

retrieved. This is not currently possible in Jolog. Howevermy this sort of functionality is tangential

to what Jolog is intended for. Accordingly, if this level of expressiveness is required then it is best

achieved in a plain Java file which can be called natively by Jolog code instead.

Performing the backtracking itself is relatively simple: careful definition of exception handler

ranges allows the JVM to do most of the control flow for us. This is not the full story though. When

backtracking we are actually pretending that we never executed the backtracked code in the first

place. This necessitates saving state – which must be done at the start of each choice point8 – and

restoring state – which must be done when backtracking. Fortunately Java provides a reasonably

convenient mechanism for achieving this via ObjectStreams. At each choice point we create a tuple

of local variables (an array of Objects) and initialise a new jolog/ChoicePointState object with

it. During initialisation, the ChoicePointState object internally creates an ObjectOutputStream

8The explicit list of operators that require this are ndet, kleene and pick. Function calls are technically choice
points, but we delegate the actual saving and restoring of state to any internal operators that define their own
choice points.
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on top of a ByteArrayOutputStream and pushes the input tuple onto the ObjectOutputStream.

This has the effect of ‘serialising’9 the object so that it can be saved. The choice point object then

extracts the underlying Byte array and stores that for later use – this is the saved state in a raw

form. The temporary streams are no longer important and can be deleted. Finally, this choice

point object is pushed onto a stack stored in the private class variable jolog back stack.

When restoring state we grab the top ChoicePointState off the internal backtrack stack and

use its internal Byte array to initialise a new ByteArrayInputStream. This in turn is used to

create an ObjectInputStream. We can then create a new tuple containing saved state variables by

reading from this stream (which is simply deserialising the data saved in our internal Byte array).

The choice point object then returns this tuple back to our Java code which proceeds to extract

individual variables and push them back into their corresponding slots. Note that this process is

for local variables only – since fluents cannot be backtracked – and all variables and their variable

slots are known at compile time. This allows us to fully generated all support code for these calls

to ChoicePointState objects and insert it inline with the rest of the user program.

The particular details of serialisation are left to Java documentation which is very good on the

topic. However we will mention one other feature that Jolog recognises; not all objects should be

serialised. In fact Strings containing sensitive passwords or Thread objects that only make sense

here and now on the current machine should not be allowed to be serialised. Worse, some objects

actively refuse to be serialised and will cause the program to fail if serialisation is attempted. To

prevent unwanted serialisation Java introduces the keyword ‘transient’ which indicates that a class

field should not be serialised. We do not have class fields so we neglect this case, however, we do

accept this keyword as a prefix to local variables. A local marked as transient will not be included

when saving state at a choice point.

Finally, we confess that we sneakily introduced the cut operator in the above code. Cut is

(in)famous from Prolog as the ! operator which ‘cuts’ choice points away. Essentially it throws

away all choice points at the point of execution. If a program fails and backtracks to a cut

instruction then the program fails. This can be viewed as breaking the purity of the logical

representation, however, it is often an essential component of a larger system. In the above case

we use it to prevent code from trying to reopen a file which would be a bad thing. We feel that

circumstances such as this (or actions which cannot be backtracked) justify its introduction into

Jolog. The implementation of cut is very simple given this: when executed it clears the class

9Note that Java spells this ‘serialization’. This is a process of converting an object – including all of its current
state – into a (possibly binary) string for distribution or saving. In fact serialisation allows Java objects to be
saved to files or sent over a network and then restored – deserialised – and begin running again without loss of
information!
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backtrack stack (jolog back stack). It also adds an exception handler to the end of the function:

if the cut exception hander is triggered then a ‘ProgramFailureException’ is generated which

terminates the entire program.

5.7 Pick (pick), There Exists (some) and For All (all)

Pick is an uncommon programming construct – it allows the user to request a binding (a value)

for a variable such that an affiliated section of code using that variable will succeed if such a value

exists. That is, the user can delegate the correct instantiation of a variable to the compiler (or the

compiled code in our case). Golog has always left this heavy lifting to the underlying Prolog system

– a luxury we can no longer appeal to. However an important observation is that pick generally

boils down to pattern matching against fluents or their values. Our implementation considers it

sufficient to enumerate all values of the declared type within the fluent store (including predicate

arguments) and store this value into the requested variable. The body of the pick can now run with

an instantiation preprepared for the target variable. This will either succeed (the ‘right’ variable

was chosen) or it will fail, causing the pick to backtrack and attempt a different binding. The

inner details of determining variable instantiations – scanning though through the fluent store –

are actually implemented in Java code, so improvements or corrections are likely to be much easier

and less likely to require getting hands dirty with Jasmin assembly10. We reveal that this process

exploits the most recent choice point’s ‘backtrack id’ to achieve enumeration: we increment this

number each time we backtrack to the pick statement (including if the user program fails). We

can thus use this number as an argument to the fluent store, which will return the idth value of

its target type as the next variable instantiation.

This is not quite the full story though. If the ‘correct’ variable binding is also a value in the

fluent store then it will work, however, the body is arbitrary code which may make no reference to

fluents. We endeavour to account for this case by enumerating all values of the specified variable

type if it is ‘enumerable’. This is of roughly the same standard as Indigolog and so we accept

some limitations of our pick implementation. We are quick to defend ourselves, however, by

emphasising that no Golog we are aware of can enumerate integers (let alone real numbers). Pick

is not a crystal ball that can solve Lagrangians or other complicated mathematical expressions, it

is bound by semantic and computational restrictions and so we cannot expect too much of it – nor

should we if we abuse its intended usage. In the case of numbers all that any Golog version offers

is to enumerate fluent values – and this is only if you carefully structure your program δ. Jolog,

10Indeed this was the reason why the fluent store was written in Java code in the first place.
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however, will provide this functionality for free (neglecting any performance impacts) and so we

accept this implementation as being of an adequate standard.

Note that we formerly endeavoured to account for additional tricky cases by providing a special

‘variable’ class. This class was implemented to behave similarly to Prolog variables – it is initially

‘unbound’ and binds to the first value it is compared against. In most cases this variable would be

bound internally to a value in the fluent store before running the user program, however, for the

first attempt of the pick statement we would provide an entirely unbound variable. This means

that the first use of the variable within the body would bind its value. This method suffered from

two crippling disabilities: it would have severely complicated the entire codebase, and worse, it

would not reliably buy us anything we don’t already have in the previous implementation.

Finally, while discussing pick we should indicate how enumeration of types is possible. Indeed

at this point we must recognise that Java as a runtime system provides some amazing features, in

this case it is even able to emulate type enumeration. This can be trivially achieved in Prolog by

wrapping a ‘type’ inside a predicate and backtracking though the list, however, it turns out that

Java is perhaps even more convenient:

Listing 5.7: simple Java ‘Reflections’ code to enumerate an ‘Enumerable’ object

1 Class . forName ( ” java . u t i l . concurrent . TimeUnit” ) ;

2 i f ( type . isEnum ( ) ) {
3 for ( Object c : type . getEnumConstants ( ) ) {
4 System . out . p r i n t l n ( c ) ;

5 }
6 }

With an implementation of pick working we can now utilise this construct to provide quantifiers:

the some and all constructs are both defined in terms of pick as follows:

some(type t | φ)
def
= ndet(pick(type t) { ?(φ); return true; } | return false; )

all(type t | φ)
def
=¬ some(type t | ¬φ)

Note that these constructs are compiled inline, so ‘return’ is actually a ‘load’ instruction. The

use of return above is a little closer to the operation of this construct as a system, since we know

that ndet will leave this value on the stack. We do not recommend exploiting this trick within

user code though.
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5.8 Nondeterministic Branch (ndet)

The implementation of ndet appears reasonably convoluted at first, however, it operates on a few

simple rules that conspire to provide the semantics we expect.

Listing 5.8: code template for nondeterministic branch (ndet)

1 save i n i t i a l s t a t e

2

3 doNdet1 :

4 δ1

5 save dummy s t a t e ( no v a r i a b l e s ) with backtrack id = 1

6 goto endNdet

7

8 redoNdet1 :

9 throw except ion // backtrack back in to δ1

10

11 doNdet2 :

12 r e s t o r e top s t a t e ( should be i n i t i a l s t a t e )

13 δ2

14 saveBacktrackId (2 )

15 goto endNdet

16

17 redoNdet2 :

18 throw except ion // backtrack in to δ2

19

20 handler : // backtrack ing except ion handler

21 get backtrack index from top (dummy) s t a t e

22 pop t h i s dummy s t a t e and throw i t away

23 i f ( backtrack index == 1) {
24 goto redoNdet1

25 } else i f ( backtrack index == 2) {
26 goto redoNdet2

27 }
28

29 f a i l P o i n t :
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30 pop s t a t e

31 throw except ion // backtrack

32

33 endNdet :

with the corresponding exception table:

from to with

doNdet1 doNdet2 doNdet2

doNdet2 handler failPoint

endNdet endScope handler

A critical element of ndet is its treatment of the backtrack stack. All nondeterministic Jolog

operators are required to keep out of each other’s way. An important step towards achieving this is

for each construct to ‘clean up’ after itself on failure – if an ndet subprogram fails then it needs to

restore the backtrack stack to the state it was in before the ndet was called. We will now examine

an execution of ndet to simultaneously familiarise the construct and to verify its treatment of the

backtrack stack is satisfactory.

Let us assume that the backtrack stack contains γ immediately before calling the above ndet

code. We can see that when ndet starts it immediately saves the initial state. This is another

critical step since it allows ndet to restore the initial condition before progressing to alternative

branches (specifically δ2). The backtrack stack now contains χ0γ (where the left most value is the

top of the stack and χ0 is the state prior to executing ndet11).

Control then flows to δ1. Let us first consider the case where this program succeeds. δ1 is an

arbitrary program so it may also contain nondeterministic operators. Our backtrack stack may

now appear as δ1χ0γ. The ndet code now resumes and stores a ‘dummy’ choice point on the

backtrack stack – a choice point which stores no local variables. The purpose of this entry is not to

save state but to save the backtrack id; each choice point stores a byte array of state information

and a ‘backtrack id’ which we use to indicate the ndet branch we are currently exploring. The

backtrack stack now contains χ1δ1χ0γ. We now execute a goto and complete the ndet.

Future code may add and remove things from the backtrack stack, however, if it fails and

backtracks to this ndet then we assume the stack is identical to the way we left it. That is, we

assume that future nondeterministic operators have cleaned up after themselves, which should

ensure the stack appears unchanged. Any future backtracking exception will be caught with our

11Note that we should always save the initial state: γ may be empty or there may be other state-modifying
instructions between here and the last nondeterministic operation. In either of these cases we will restore an old
and inaccurate state unless we explicitly save a copy ourself.
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handler, which proceeds to pop the top of the stack χ1 – our dummy state – and retrieve the

backtrack id ‘one’. This is an index into our handler vector which indicates we should retry δ1. We

now jump to redoNdet1 where we immediately throw a new exception. This exception will either

be caught by δ1 or if that fails (either because it has no nondeterministic operators or because

it has exhausted all of its nondeterministic options) then control is caught by the ndet itself and

handed to δ2.

We note that immediately after throwing this exception the backtrack stack is δ1χ0γ – that is

we have restored the backtrack stack to the state that δ1 left it. If we assume that this program is

implemented correctly then it now has the state it expects and can decide how it wants to handle

failure. This program may find an alternate execution, succeed and modify the stack. We will then

reappend our dummy state χ1 and execution will continue after the ndet. This may happen as

many times as δ1 can support – potentially infinitely in the case of the Kleene operator. However

if δ1 should fail then the first ndet exception entry will catch the exception and hand control to δ2.

We note that for δ1 to fail it must have cleaned up the stack to the point at which it was called.

The backtrack stack must then contain χ0γ.

At the point we are about to attempt an alternate branch of the ndet as if we had never

executed δ1 in the first place. To do this we must first restore the fluents to the ndet’s initial

state, which is conveniently at the top of the stack. Execution now continues as before with two

distinctions: we execute δ2 now instead of δ1 and our dummy state is now χ2 – the second branch

corresponds to the backtrack id of two. This branch is also complemented by an entry in the

exception table and a corresponding handler in the ndet code. This should be sufficient evidence

that the second branch will behave equivalently to the first.

The remaining case is when δ2 fails, which indicates that the entire ndet has failed. In this

case the exception is fired between the labels doNdet2 and handler so the second exception entry

will match and pass control to the ndet fail point. We assume that δ2 is implemented correctly, so

on failure it restores the backtrack stack. Thus the stack contains exactly χ0γ. However χ0 was

the situation immediately before the ndet which is of no use to anyone but us, so we throw this

entry away. The backtrack stack is now at γ – we have successfully cleaned up after ourself and

can safely throw an exception to pass control to an earlier choice point.

Note that in our execution we never got in the way of another (well-behaved) nondeterministic

operator – potentially including our subprograms. This design was chosen for its simplicity and

its flexibility; we can now construct arbitrarily nested nondeterministic operators:

ndet(ndet(α|β) | ndet(γ|δ))
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5.9 Nondeterministic Iteration (Kleene star)

The nondeterministic iteration operator – the Kleene star – behaves in a similar way to ndet.

However we now have the luxury of ignoring the backtrack id – when we backtrack to the Kleene

construct we simply restore our saved state and throw the save away. Next we run the user program

one more time and save the resulting state as if it is our initial state.

Listing 5.9: code template for nondeterministic iteration (Kleene star)

1 save i n i t i a l s t a t e

2

3 // try zero execut i on s f i r s t . . .

4 goto endKleene

5

6 //do the program once more . . .

7 s ta r tK l e ene :

8 r e s t o r e s t a t e

9 throw our save away

10

11 δ // run the user program

12

13 save s t a t e

14

15 endKleene :

The above code is complemented with the following exception table:

from to with

endKleene endScope startKleene

Note that Kleene does not have a ‘fail point’ like ndet does. The beauty of this implementation

is that we just run the user program one more time and save the resulting state for the next round.

If δ should fail then it will tidy itself up and throw an exception. We have already fullfilled our

failure conditions at this point though so Kleene can let an earlier construct catch the exception

without intervention.
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5.10 Function Calls

Function calls are very simple in Java: push the object reference (for non-static functions), then

push all arguments in order, then invoke the desired function with invokevirtual (or invokestatic

or invokespecial for static methods or constructors respectively). The issue however is that Jolog is

required to backtrack to previous choice points – which may be inside a function that has returned.

The adopted solution to this problem is to wrap a function call in a ‘choice point-like’ exception

handler structure. That is, when calling a function for the first time we do the normal method

above, but the compiler also supplies an unnamed Boolean value ‘false’. The target function will

then run, possibly adding its own choice points to the backtrack stack, then return. Execution can

now continue with the rest of the program. If a later failure forces backtracking to this function

call then we catch it and attempt to rerun the function. However we now supply the value ‘true’

as this final parameter.

We now examine how a function interprets the value of this mysterious parameter. The first

line of each function is not user code – it is a special check against the value of this internal

parameter. If the value is false (this is the first call) then execution continues on to user code,

however, if the parameter is true then we execute a jump to the very end of the function (after

all user code, including the function return). At this point the function throws a backtracking

exception. There are now two potential results: the function does not contain any choice points

(nondeterministic operators or function calls) or it does. In the case of no choice points then there

will be no exception handlers so the function will immediately fail. This will backtrack to our

initial function call and then attempt to be caught at this point – it is as if we never called the

function at all.

The other case is if the function does have choice points. We first note that the function

call has not touched the backtrack stack (in fact it never does). This means that before the

first call to this function we have a backtrack stack of γ. The first (successful) completion of the

function will leave the backtrack stack at δγ (since we assume here it has at least one choice point).

Execution continues in the base function then backtracks to this point. Our enforced semantics

for nondeterministic operators state that we should find the backtrack stack the way we left it, so

it should still be δγ. Calling the function again and jumping to the end will not change this. At

this point we throw an exception which must be caught since the function has a choice point in

it. Further the backtrack stack is correct for its purposes. Control will now continue as in normal

execution and we will run the base function again, or if we have run out of valid choice points in

this function then it will backtrack – the function will fail with an uncaught exception. This case

behaves identically to a function call without any choice points as explained earlier.
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The various potential execution paths are summarised in the following diagram:

Figure 5.4: Competing control flows for Jolog functions

We now present the code template for function calls:

Listing 5.10: code template for Jolog function calls

1 fn (~x , f a l s e )

2 goto end

3 r e t r y :

4 fn (~x , t rue )

5 end :

with an exception entry:

from to with

end endScope retry

As a final note we observe that this backtracking mechanism makes sense in a ‘linear’ function.

A function with multiple exit points requires the backtrack to start at the correct return. This

is tricky (though it could be achieved in an analogous manner to ndet) and has no real impact

on the expressiveness of a function. Accordingly we disallow multiple returns. This feels more

appropriate since it is more ‘structured’, and more importantly, Prolog (and all Gologs built on

top) behave in the same manner – they have no notion of a return value in the first place.
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5.11 Tuples

Emitting a tuple is relatively straightforward; in all cases, a tuple used as an ‘rvalue’ (as a constant

to the right of an assignment operator or as an argument to a function) is most useful as a normal

array – its reference can be assigned to a variable or passed to a function in one operation. To this

end, tuples are emitted by first creating a new array, then emitting each component expression

and assigning to the relevant array cell.

Assignment to a tuple is a trickier process. First we want to ensure that only valid (left hand

side, or ‘lvalue’) tuples can be assigned to. So we can say, for example:

(x, y) = (y, x)

for fluents or local variables x and y, but we cannot write:

(1,myFunction()) = (x, y)

since assigning to the integer literal 1 or the function myFunction() does not make sense. This

sanity check is achieved by delegating the assignment to each of the individual components: a

tuple object within the compiler stores a vector of expressions. When assigning we simply assign

to each expression in turn. If the tuple we assign to stores fluents and local variables, then each

one of these will be assigned correctly (and perform the necessary type checks). If the tuple on

the left of the assignment operator, however, is a literal or a function call then these objects will

offer their own error messages as to why the tuple assignment cannot proceed.

Note that in the above (legal) example the syntax requests two tuples for an assignment, where

the tuple to the right hand side loads the values of x and y into an array. The left side, however,

should not create a tuple – we want to assign the values on the right into the corresponding

variables on the left. In fact, this example utilises tuples to avoid (explicitly) creating a temporary

variable when swapping two values. This is a canonical example of Python tuples and accordingly

serves as a standard for our own implementation.

It should be evident that our approach for emitting (evaluating the right hand tuple and storing

into an array) and assignment (iterating through each element and delegating the assignment to

the corresponding expression) both work under these additional restrictions. The catch in this

arrangement comes from loading values onto the execution stack. When assigning to a tuple of

local variables we can simply emit the complete initialisation expression to get an array or tuple,

then duplicate this and assign to each corresponding element in our lvalue tuple. This approach no

longer works if we are assigning to a tuple of fluents, since fluent assignment requires a fluent store
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object on the stack. That is, we need prefix and postfix operations for each element of the initiali-

sation expression. The current mechanism for assignment mandates that expressions that support

assignment receive a single initialisation expression and deal with everything else internally. This

produces a neat interface that is sufficient for all other constructs. However, the convenient ab-

straction becomes a problem in this case, since it obstructs division of the initialisation expression.

There are at least three potential solutions to this problem without affecting the existing

interface:

• Re-emit the initialisation expression for each individual assignment and pick out the target

component

• Emit the initialiser once, emit the assignment prefix and do complicated stack reordering

• Emit the initialiser once, store into a local variable and retrieve components from this

The first proposal has two severe drawbacks: first, it is much less efficient due to duplicate code,

and second, if the right-hand tuple includes function calls with side effects (file IO for example)

then we could easily produce unexpected results.

The second suggestion is worse since it will not always work: local variables are still fine, but

fluents can potentially require two prefix values on the stack before each instance of the initialiser.

The bytecode instructions are quite expressive, allowing duplication as well as direct and indirect

swapping, but they prevent distant stack manipulation. We could restrict tuple assignment to

local variables, but this is inelegant and violates our self-imposed abstraction.

The third proposal does not suffer from any of these restrictions – it allows the initialiser to be

emitted once, stored, and its values retrived internally without breaking abstraction or making any

assumptions about stack usage. The merits of this approach clearly justify its implementation.
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Chapter 6

Syntax

6.1 Type Checking and Name Resolution

The scope of Jolog has grown from its initial conception of a small, standalone language, to a

larger beast capable of running arbitrary Java code. While this has enhanced Jolog’s usefulness, it

has also introduced several unique issues. This is especially true in regards to type checking. Most

modern languages are able to differentiate between variables, functions and values fairly easily due

to distinct syntactic features and lookups in a symbol table. This is not so trivial in Jolog since

there is an expectation to preserve duplication in syntax and in language constructs available in

previous versions of Golog.

In particular, we wanted Jolog’s syntax to exhibit the following properties:

• Fluent names should be predicates, keeping with Golog’s logic theme

• Pick statements should be able to bind variables to fluent arguments and values

• Dynamic fluents should be permitted (that is, we do not know at compile time whether a

fluent exists)

• Functions and actions are essentially the same creature to the end user, so their calling syntax

should be related

• Disambiguation via spurious prefixes and suffixes should be avoided

These constraints highlight several issues:

• References to fluents, functions and actions all have the same form
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• Fluent names and values cannot necessarily be distinguished and resolved to code at compile

time: they may both be predicates and the compiler may have never seen either declared

All flavours of Golog to this date have avoided these issues by relying on sensible users and

Prolog ’s pattern matching to pick something that might work. However this approach is unsatis-

factory in Jolog since it would mandate a ridiculous implementation and it erodes the notion of

types that we want to introduce and enforce.

The adopted solution is achieved via our definition of Jolog name resolution:

• Local variable names must be atoms1 (as in C or Java)

• Fluent names must be predicates or atoms

• Function names (including primitive and sensing actions) must be predicates

• Fluent values are ‘encouraged’ to be tuples or any non-predicate type

• Actions are compiled to be identical to normal functions and are treated as such internally

• Primitive and sensing actions are called like normal functions

• Exogenous actions are usually called externally and work on message passing, so these are

called via new communication primitives

• A predicate will be resolved to a function call if a matching function definition (including a

primitive or sensing action) has been registered, otherwise it will be treated as a fluent

Note that the restriction on fluent types is at compile time and applies to name resolution

only: the Jolog compiler has to decide what Java bytecode to generate. In particular, there are

different operations for fluents and local variables – this heuristic means the compiler can assume

that if it hasn’t seen a predicate before, then it is just a dynamic fluent and fluent code should be

generated. All other types will then be treated as local variables, literals or function calls based on

their own distinguishing syntactic features and the above resolution rules. There is no restriction

against storing a predicate in a fluent though – fluents can store arbitrary types – so a less direct

approach will achieve these ends, for example:

1An atom is a predicate without arguments; in our case it should not include parentheses either.
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Listing 6.1: valid Jolog code for storing a Predicate as a fluent value

1 // manually c r e a t e a p r e d i c a t e : head (3)

2 Pred i ca te p = new Pred i ca te ( ”head” ) ;

3 p . addArgument ( 3 ) ;

4

5 // s t o r e t h i s p r e d i c a t e i n t o f l u e n t : f (”my f l u e n t ”)

6 f ( ”my f l u e n t ” ) = p ;

That is, the compiler won’t hide the process of creating the predicate – this brand of syntactic

sugar is for fluent names only.
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6.2 Agent

Jolog is an agent-oriented language, so Java classes are naturally replaced with ‘agents’ – extensions

of regular classes. In particular, an agent allows (non-static) functions, local variables and class

‘fluents’ but complements these with actions: a mechanism for communication with other agents

and controlled modification of fluents. Note that static functions are still permitted (in fact, a

valid main function can be written in Jolog). However these functions have severe restrictions on

their functionality, in particular they cannot contain any nondeterministic constructs (since there

is no access to the class’ ‘backtrack stack’). Note also that a fluent’s value is accessible throughout

an agent, but can only be modified by an action – as in Indigolog. This restriction is justified by

the powerful operations available only to fluents, namely the pick and search features.

Besides the ‘agent’ prefix, an agent is syntactically identical to a Java class:

Listing 6.2: Jolog agent template

1 agent agentName {
2 f l u e n t s

3 a c t i o n s

4 f u n c t i o n s

5 }

where fluent, action and function definitions may appear in any order the user may desire.

This shuffling of definitions is possible since compilation detects all function and action prototypes

first, then proceeds to compile their individual bodies. This two-step process allows us to resolve

all function and action names inside any function or action body without the need for forward

declarations. In fact this ‘feature’ is essential for our resolution system to correctly disambiguate

between fluents, actions and functions which all share identical syntax. The specifics of these

components are discussed in the remainder of this chapter.
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6.3 Fluents

Modern Golog variants use ‘fluents’ – constructs more familiar as local variables – and so this

pattern is continued in Jolog. A major distinction between fluents and variables is in the increased

functionality that fluents provide:

• dynamic insertion and removal

• pick (non-deterministic selection/instantiation)

• search

The complexity introduced by these features means they are more conveniently implemented

in Java code – rather than composed in assembly by hand – and so code to load, store and reason

with fluents in the fluent store is written in pure Java. Accordingly only the final result needs

to be dealt with in hand-written assembly. This has the advantage of being more reliable and

easier to change. It also reduces the size of agent files since fluent code appears once, and this is

in the external fluent store object. Agents can now call functions in the fluent store rather than

duplicating these common routines.

Fluents are characterised in the language as predicates:

name(arg1, arg2, . . .)

where the name is an identifier (an underscore or alphabetic first character, followed by an

arbitrary number of underscores and alphanumeric characters). For example:

Listing 6.3: examples of Jolog fluent definitions

1 int f l u e n t ;

2 Object anotherFluent (0 , ” second argument” ) = new Object ( ) ;

The value of a fluent has very few restrictions; it is of type java/lang/Object. This means it can

hold any reference type, including arrays, but no primitive types. Care has been made to ensure

that the Jolog compiler implicitly converts primitive types to their corresponding reference types

when storing, and converts back when loading, so that fluents of primitive type should appear

identical in Jolog code.

The only other major restriction on fluent values is that they should not ordinarily be of

type jolog.Predicate. This class is used for fluent names and the distinction is drawn to ease in

compile-time resolution of unknown dynamic fluents, as discussed above.
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6.4 Message Passing and Exogenous Actions

Jolog aims to introduce Golog to a more ‘distributed’ realm, and personal experience indicates

that message passing is a preferable form of communication – in terms of simplicity, correctness

and provability – under this domain (it is certainly superior to shared variable solutions in all but

simple cases). Some convenient syntactic sugar is borrowed from C++ to encourage this paradigm:

input from an InputStream (or subclass) can be read via the >> operator:

Listing 6.4: valid Jolog code for reading a Message from an InputStream

1 InputStream input ;

2 Message m;

3 input >> m;

Similarly, Messages can be sent with the << operator. Note that these operators are not

restricted to sending Messages: any (serializable) type can be sent, including reference types like

Strings and primitive types like ints or floats.

Note also that System.in, System.out and System.err are InputStreams and OutputStreams –

as are user files – so convenient C++-style I/O can be performed using these operators.

Exogenous actions can now be viewed in terms of these operators. If the ‘world’ changes, then

it is the ‘world’ agent who is responsible for informing all its citizens of the change. Further,

because the world agent may be an external system (a separate program, hardware, user input,

etc) we need to be informed via a general mechanism: Messages over InputStreams. Internally

an exogenous action is caught and redistributed by an agent’s ‘environment’, which forwards the

Message to each agent by calling their receiveExogenous(Message) function. Receiving exogenous

actions is accordingly transparent to user code. However if we are the world agent then we need

some way of signalling a change – we need to send an exogenous Message to an environment (or

to a specific agent if we so desire). This is achieved with identical syntax to above:

Listing 6.5: valid Jolog code for sending a Message to an InputStream

1 Environment myFriends = . . . ;

2 myFriends << ” he l l o , my f a v o u r i t e number i s ” << 9 ;

Note that data to be sent will be combined into a single Message, so that the myFriends environ-

ment will receive ”hello, my favourite number is 9”.

The specific implementation of exogenous actions warrants its own discussion; the template for

an individual action is provided here:
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Listing 6.6: code template for individual exogenous actions

1 Message exogenousAct ion i( Message message ) {
2 i f message matches pattern i :

3 update f l u e n t s us ing s u c c e s s o r s t a t e axioms

4 return new message

5 else :

6 return null

7 }

Firstly it should be noted that the first line performs a Java regular expression match with

the input message. This simply establishes that we are executing the correct function for the

given action – it is an implementation detail to allow execution of multiple actions with arbitrary

‘names’ where each action has to check that its pattern (as opposed to its name) matches the

input message. If the message does match then we check the precondition φ. Note that if the

message action does not match the action pattern, then the action handler backtracks (throws an

exception) and attempts a different action such that we only execute relevant (user) code for the

correct actions. In this way the correct action can be ‘chosen’ and executed at runtime.

Secondly, no exogenous actions have preconditions (or equivalently, they all have true precon-

ditions). Exogenous actions are otherwise equivalent to primitive actions2.

We can argue from these two points that the implementation is the same as in Congolog :

δEXO ≡ (πa |?(isExogenous(a)); a)∗

Note that the correctness of this claim relies on the implementation of primitive actions – as

in Congolog – which is discussed later. We let this suffice as a proof of correctness: there are no

definitions of trans or final relations for δEXO because this program is not directly accessible within

user code.

6.5 Functions and Expressions

Care has been taken to ensure that Jolog expressions, function calls and function definitions appear

just as in normal Java code. Two exceptions are the absence of bitwise operators (these are used

solely for actions/IO) and the absence of generic type parameters (enclosed in angle brackets). Note

that Java generics are actually just clever inference by the compiler: the actual type information is

2In fact much of the code to generate these actions is common.
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discarded and all generic types are stored as java/lang/Object. This design decision makes generic

code backwards compatible with previous Java bytecode versions without restricting modern Java

compilers from reasonable type safety. It also means that the Jolog compiler can legitimately

ignore these parameters at the expense of some type safety.

The syntax for relational operators has also been slightly augmented to allow a collection of

relational (and equality) tests. For example, this more ‘logical’ notation permits:

0 < 1 ≤ 2 > 1

which returns true. Compiling code like this in a C -like language is liable to yield false as each

binary relation compiles to a truth result which is used in subsequent calculations. In reality Jolog

is simply providing syntactic sugar for the more familiar:

0 < 1 ∧ 1 ≤ 2 ∧ 2 > 1

For completeness, function definitions have a template resembling:

Listing 6.7: code template for Jolog function definition

1 [ pr ivacy ] returnType functionName ( type0 argument0 , type1 argument1 , . . .) {
2 // body

3 }

where ‘privacy’ indicates an (optional) access control level of public, private or protected and the

parentheses contain a comma-separated list of parameters – a type followed by an identifier3.

The body of a function contains zero or more ‘statements’ which include:

• return statement: return [value] ;

• local variable definition: type name [ = φ ] ;

• if statement: if (φ1) { δ1 } [ else if (φ2) { δ2 } . . . [ else { δn } ] . . .]

• while statement: while (φ) { δ }

• for statement: for ([δinit] ; φ ; [δupdate]) { δ }

• test: ?(φ) ;

3Jolog ’s definition of identifiers is comparable to many other languages: a human readable ‘word’ that does not
start with a digit and consists of only alphanumeric characters and underscores.
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• nondeterministic branch: ndet(δ1 | δ2)

• nondeterministic iteration: δ∗ ;

• nondeterministic choice of argument: pick(type identifier) { δ }

• scope: {δ1 . . . δn}

• expression statement: [expression] ;4

Void functions (procedures) are issued with a compiler-provided return statement if the user

chooses to omit it. However the Jolog compiler is unable to provide a sensible default value for

functions that return a type. Non-void functions that do not specify a return (or specify an

incorrect return type) will be treated as errors. Note also that the implementation of backtracking

in functions means that nondeterminism becomes frighteningly difficult in the presence of multiple

exit points. Multiple returns are accordingly prohibited in Jolog functions.

6.6 pick, some and all

Pick allows a user to specify a variable name and a subsequent program that uses a ‘nondeter-

ministically chosen’ binding of this variable to positive effect. With the introduction of types, we

augment this picture by requiring a type declaration too. The result is code that looks like:

pick (type t) { δ }

where the user program δ (generally) uses a variable called t of type type. Note that pick essentially

supplies a value to the user program and sees if it works. If δ always fails (or doesn’t even use the

pick ’d variable) then pick will be powerless to successfully guide the program to completion, as in:

pick (int i) {fail; }

Clearly the failure of this program is unrelated to the efforts of this construct. In fact, in this

case pick will retry several bindings of i in the hopes that one of them might work. This may be

viewed suspiciously although this particular program is fairly ridiculous anyway. Of more use is a

4The useless sounding ‘expression statement’ precludes its true use: the common function call is a particularly
ubiquitous expression statement.
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program that exploits this implementation to achieve iteration:

ndet ( pick (int i) { System.out << myFluent(i) << endl; fail; } | {} )

Programs like this highlight the convenience of the pick construct, which provides the most

effective access to an arbitrary fluent, especially when the structure of the fluent’s name is known,

but the values are not.

While Pick deals with specific values, its more ‘logical’ counterparts simply deal with the

‘existence’ of values: some and all correspond to the logical quantifiers ∃ and ∀. As such, a

distinct logical notation is provided for these constructs:

some (type t | φ)

and

all (type t | φ)

Note that φ is similar to the user program δ in pick, however, φ is expected to be a Boolean

formula. Note also that these constructs are Boolean formulae themselves, so they cannot just

appear in Jolog programs unaccompanied. Two traditional usages are:

Listing 6.8: Uses of some and all in Jolog programs

1 i f ( some ( St r ing s | person ( s ) ) ) {
2 //we know at l e a s t one person e x i s t s

3 } else {
4 //no one around . . .

5 }
6

7 //make sure no one i s rude

8 ?( a l l ( Person p | ! rude (p ) ) ) ;
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6.7 Tuples

Tuples have been introduced to the grammar to provide easier disambiguation between fluent

names and values. They are also a popular construct found in the Python scripting language, so

their use for storing a collection of data is widely accepted – arguably more so than for a Prolog-

style predicate. Further, this introduction can be performed without affecting the expressiveness:

a predicate with arity n can be viewed as a tuple of arity n+1 with the tuple’s first value equivalent

to the predicate head. Tuples appear in code enclosed in parentheses:

(ν1, ν2, . . . , νn)

Note that the arity of a tuple must be greater than one; there is no way of distinguishing a single

element tuple from a bracketed expression. Even Python breaks this problem with an inelegant

syntactic exception5. Alternatively, the grammar could be modified to use different syntax, angle

brackets for example. In fact this change would be very quick since the only problem is with

resolution: the internal code already supports arbitrary-size tuples and the grammar would require

only three new characters. However this change would be cosmetic only, and parentheses feel more

appropriate. Furthermore the reasons for wanting a single-arity tuple are unclear, especially since

Jolog permits arbitrary types; a tuple of size one doesn’t buy anything new.

5For those with particular interest, a Python tuple of size one can be created with a trailing comma: myTuple =
value ,
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Chapter 7

Jolog Implements the Situation Calculus

The process of ensuring that a compiler generates ‘correct’ code is hard, let alone ensuring all the

support libraries also work. Further, the effort spent verifying often far outweighs the potential

benefits: a well tested compiler is quicker and easier to produce than a verified compiler and is

sufficient for many non-critical systems. Indeed, depending on the proof method, testing can even

strengthen a proof by ensuring that no shortcuts were taken along the way (when reducing to

a simpler model or discharging proof obligations with weak arguments). Very few compilers are

verified for these reasons amongst others.

What follows is not a proof of correctness in these terms; Jolog does not belong on the Space

Shuttle or in a real-time system – its nondeterministic features are not appropriate for these

domains and the time delays they introduce are unacceptable, let alone near-impossible to prove

properties of. However this does not mean that there is nothing useful we can say about Jolog.

In this chapter we introduce a proof of correctness not by the above standard, but in terms of

something more useful to our domain. Specifically, the following sections develop an intuitive

argument for why Jolog implements the Situation Calculus – a formal theory of actions – and

inherits a heritage in reasoning with first-order logic along the way.

Proof proceeds by showing that the compilation and execution technique described in Chapter

5 satisfies the Trans and Final semantics introduced by De Giacomo, et al. for Congolog.

64



7.1 Congolog

The definitions of Trans and Final predicates as provided in Congolog [2] are as follows:

Empty program:

Trans(nil, s, δ′, s′) ≡ False

F inal(nil, s) ≡ True

Primitive actions:

Trans(α, s, δ′, s′) ≡ Poss(α[s], s) ∧ δ′ = nil ∧ s′ = do(α, s)

Final(α, s) ≡ False

Test:

Trans(?(φ), s, δ′, s′) ≡ φ[s] ∧ δ′ = nil ∧ s′ = s

F inal(?(φ), s) ≡ False

Sequence:

Trans(δ1; δ2, s, δ
′, s′) ≡ ∃γ (δ′ = (γ; δ2) ∧ Trans(δ1, s, γ, s′))∨

(Final(δ1, s) ∧ Trans(δ2, s, δ′, s′))

Final(δ1; δ2, s) ≡ Final(δ1, s) ∧ Final(δ2, s)

Non-deterministic branch (ndet):

Trans(ndet(δ1|δ2), s, δ′, s′) ≡ Trans(δ1, s, δ
′, s′) ∨ Trans(δ2, s, δ′, s′)

Final(ndet(δ1|δ2), s) ≡ Final(δ1, s) ∨ Final(δ2, s)

Non-deterministic choice of argument (pick):

Trans(pi(v){δ}, s, δ′, s′) ≡ ∃~x Trans(δv~x, s, δ
′, s′)

Final(pi(v){δ}, s) ≡ ∃~x Final(δv~x, s)

65



Non-deterministic iteration (Kleene star):

Trans(δ∗, s, δ′, s′) ≡ ∃γ (δ′ = γ; δ∗) ∧ Trans(δ, s, γ, s′)

Final(δ∗, s) ≡ True

7.2 Assumptions

We start by declaring a few assumptions about our implementation:

• The closed-world assumption and the common-sense principle of inertia both hold.

• All code generated by the Jolog compiler is syntactically valid, so a Java Virtual Machine

will not crash mid program. This is further restricted by assumptions about user activity:

we assume that a given Jolog program will not throw any casting errors or NullPointerEx-

ceptions.

• A compiled Boolean formula has the same semantics as a corresponding Boolean formula,

although we augment this with ‘short-circuit’ conjunctions and disjunctions1.

• A Boolean formula (denoted here by φ) does not contain function or action calls2

1Short-circuiting ands and ors is familiar in C -like languages, for example: false∧ x is false, irrespective of the
value of x. Short-circuiting is a process of aborting compilation early if we already know the result. In this case it
indicates that we do not evaluate x.

2Note that Jolog allows this functionality if it is truly desired although we make no guarantees about its usage
in circumstances where a plain Boolean formula is required. In some cases this may lead to duplicate execution of
code and so we legitimately omit these cases from our proof.
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7.3 Result

The following result formalises the correctness of a Jolog program:

Theorem: Given a Jolog program δ and initial situation s0, the following holds:

Transjolog(δ, s, δ
′, s′) ≡ Trans(δ, s, δ′, s′)

and

Finaljolog(δ, s) ≡ Final(δ, s)

Proof: We prove this result by considering each of the basic constructs of a Jolog program in

turn.

7.3.1 Empty program

In the case of an empty program, the Jolog compiler produces empty functions: no code. Providing

the Java Virtual Machine (JVM) with no code will clearly result in no code being executed, so the

system will be unable to transition the program or the current situation – there are no instructions,

so no way of modifying the situation:

Transjolog(nil, s, δ
′, s′)⇒ False

Alternatively, consider the case where the virtual machine is unable to transition. By assump-

tion 1 above we can then assume that the only reason that the JVM would not execute code is if

there is no code available to be executed:

Transjolog(nil, s, δ
′, s′)⇐ False

Furthermore, if the JVM is unable to transition, then it is already finished – it would have

executed the last instruction then finished, before attempting a non-existent empty program. That

is, the program is trivially Final in this situation.

Finaljolog(nil, s)⇒ True

Similarly, if the program has finished – it is ‘executing’ the empty program – then Final must

be true. If the JVM is not finished then it must be executing code and so the program cannot be
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empty. We can then assert that:

Finaljolog(nil, s)⇐ True

Hence, Jolog ’s execution of the empty program is equivalent to that specified by Congolog :

Transjolog(nil, s, δ
′, s′) ≡ Trans(nil, s, δ′, s′)

Finaljolog(nil, s) ≡ Final(nil, s)

7.3.2 Primitive actions

The Jolog code produces Java bytecode equivalent to:

Listing 7.1: code template for primitive actions

1 void name( arguments , . . .) {
2 i f (φ) {
3 // update f l u e n t s us ing s u c c e s s o r s t a t e axioms

4 } else {
5 f a i l ; // b a c k t r a c k

6 }
7 }

where φ is the disjunction of one or more Boolean formulae (as specified in user-defined possible

statements), or true if no precondition is provided.

We now observe that the body of the if statement is only executed if φ holds. Further we claim

via Assumption 2 that this precondition is a correct implementation of a user-provided possible

formula which is defined to be semantically equivalent to Poss(α[s], s) in the Situation Calculus.

That is, a successful transition implies

Transjolog(α[s], s, δ′, s′)⇒ Poss(α[s], s)

Next we examine the body of the if statement itself. An assertion within the compiler en-

sures that the body can only contain assignments to fluents, as indicated in the above template.

Furthermore these assignments correspond to user-provided set statements – which are defined to

be semantically equivalent to the current action’s successor-state axioms in the Situation Calcu-

lus. Thus by executing all of these assignments we are modifying the situation by precisely the
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successor-state axioms for this action. That is, these assignments transition the current situation

s to a new situation s′ = do(α, s). We reinforce this assertion with the following argument:

Proof: Assume that executing these assignments in situation s results in a situation s′′ where

s′′ 6= s′ = do(α[s], s). This means that there must be at least one fluent f where its value differs

between the two successor situations:

∃f f [s′] 6= f [s′′]

Since both s′ and s′′ originated from the same previous situation s we know that either:

• f [s] = f [s′] 6= f [s′′]. That is, the fluent value changed when it shouldn’t have. Fluents, how-

ever, will only be modified if an assignment statement is compiled from a user-provided sets

statement. Further, this sets statement defines the successor-state axiom for this domain,

so f [s′] should also change. Contradiction.

• f [s] = f [s′′] 6= f [s′]. That is, the fluent value did not change when it should have. We

note that for the value to remain unchanged there must have been no corresponding sets

statement for this fluent, and so the successor-state axiom (complemented by the closed-

world assumption) should ensure that the fluent value does not change in the Situation

Calculus, that is f [s] = f [s′] = f [s′′]. Contradiction.

• f [s] 6= f [s′] 6= f [s′′] That is, Jolog and the Situation Calculus both update the fluent, but

get different results. Clearly they are both executing the same successor-state axiom as this

is provided by the user. The compilation process must then be responsible for distorting the

effects of this formula, however this contradicts Assumption 3.

So by contradiction, s′′ cannot exist and we can conclude:

Transjolog(α, s, δ
′, s′)⇒ s′ = do(α, s)

Finally, if the JVM has completed this action – that is Transjolog(α[s], s, δ′, s′) holds – then

there is nothing left to do. Hence this subprogram must transition to the empty program δ′ = nil.

The conjunction of the above claims allows us to conclude that

Transjolog(α, s, δ
′, s′)⇒ Poss(α[s], s) ∧ δ′ = nil ∧ s′ = do(α[s], s)

We prove the reverse direction of the equivalence via its contrapositive.

69



The Situation Calculus clearly indicates that a situation is only modified by executing an

action3 s′ = do(α[s], s). Let us assume that this action α is currently possible and we have finished

executing our immediate subprogram:

Poss(α, s) ∧ δ′ = nil

Now if we were in situation s and we transitioned to a new situation s′ 6= do(α[s], s) then

we cannot have executed α to do so (because as we saw earlier we would be in s′ = do(α[s], s)).

Accordingly, if we do not change to the situation s′ = do(α[s], s) then we have not executed α and

so Transjolog(α, s, δ
′, s′) clearly does not hold. We further justify this conclusion by appealing to

the above proof of correctness of the successor-state axioms. Finally, we can combine these facts

to see:

¬Transjolog(α, s, δ′, s′)⇒ s′ 6= do(α[s], s)

⇒ ¬Poss(α[s], s) ∨ δ′ 6= nil ∨ s′ 6= do(α[s], s) (†)

⇒ ¬ (Poss(α[s], s) ∧ δ′ = nil ∧ s′ = do(α[s], s))

∴ Transjolog(α, s, δ
′, s′)⇐ Poss(α[s], s) ∧ δ′ = nil ∧ s′ = do(α[s], s)

We draw attention to † – we assumed that Poss and δ′ had the opposite values, so they are

both false in the current context. Thus the truth result here is still equivalent to the previous line.

Then when we extract the negation we end up with a conjunction that still holds because of our

original assumption.

Note that our assumptions that Poss(α, s, δ′, s′) and δ′ = nil holds are not strictly necessary

– this proof hinges on the correctness of the situation and so arbitrary truth values for Poss

and δ′ could technically be inserted via ‘disjunctive introduction’. However this is a controversial

argument form and so we avoid it at the cost of expanding our proof in the cases where these

assumptions do not hold. We can see from the code template that the successor state axioms

are only evaluated if the precondition holds; if ¬Poss(α, s) then this if statement will fail and

so will the entire action – we cannot have transitioned. Alternatively, if our final state δ′ 6= nil

3This is especially true in Reiter ’s formulation, since the situation is nothing more than the list of executed
actions! Alternatively we can observe that only the Congolog trans definition for actions makes any claim about
modification. The only other rule to even mention the situation is the test relation ?(φ) which asserts that the
situation does not change.
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then we have not completed transitioning and so trans cannot hold in this case either. Hence our

equivalence result above remains valid.

Finally we cite Assumption 2 above to ensure that if an action is called then a definition for

that action exists. Given this we can easily claim that a primitive action is never final: it will

always generate code and so the JVM will always have something to do.

Thus Finaljolog(α, s) ≡ False.

7.3.3 Test

The precise nature of the test construct has evolved with the Golog family. In the first Golog,

test behaved essentially like an assert: if we execute the test statement and continue onto code

immediately after it, then we know that the condition is true. Otherwise execution backtracks to

a previous choicepoint.

Test was redefined slightly for Congolog though; given sufficient concurrent priorities the test

statement may block waiting for the condition to be made true by another ‘thread’ instead of

simply failing. However test will also decay to a simple assert – as in Golog – in the absence of

concurrent constructs[2]4.

Jolog prefers to delegate all forms of concurrency to Java constructs – blocking in particu-

lar should be achieved via a proper semaphore from the Java concurrency library – hence the

implementation of test is done as described in the former definition, specifically:

Listing 7.2: code template for the test construct

1 i f (¬φ) {
2 throw new Fai l edPrecond i t i onExcept ion ( ) ; // b a c k t r a c k

3 }

This code template indicates two potential executions:

• φ is true, so the if fails and execution of this program terminates

• φ is false, so the if succeeds and proceeds to throw an exception (and hence backtrack).

4Note that despite the assertion, we cannot guarantee the condition is still true immediately afterwards due to
potential intervention by exogenous actions.
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We can then observe that successfully running this program (that is the JVM transitions

through it) yeilds several postconditions:

• φ is true

• the subprogram is empty (by definition), so δ′ = nil

• the situation has not changed, so s = s′

Hence:

Transjolog(?(φ), s, δ′, s′)⇒ φ[s] ∧ δ′ = nil ∧ s = s′

We now consider the reverse direction. If the situation has not changed then we may have

executed a test, since test cannot be responsible for modifying the situation by Assumption 4 and

because no assignments appear in this code template.

Transjolog(?(φ), s, δ′, s′)⇐ s = s′

Similarly, if we have successfully transitioned to the empty program then we must have done

so by executing the test, so:

Transjolog(?(φ), s, δ′, s′)⇐ δ′ = nil

Finally, as we noticed earlier, if the precondition holds then the entire test since no other code

in the template is able to fail:

Transjolog(?(φ), s, δ′, s′)⇐ φ[s]

Thus:

Transjolog(?(φ), s, δ′, s′)⇐ φ[s] ∧ δ′ = nil ∧ s = s′

And so Jolog ’s test is equivalent to Congolog ’s:

Transjolog(?(φ), s, δ′, s′) ≡ φ[s] ∧ δ′ = nil ∧ s = s′

Note also that the there is no reason not to evaluate the condition, so the program cannot be

considered complete until this has been performed:

Finaljolog(?(φ), s) ≡ False
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7.3.4 Sequences

Sequences are trivially implemented in Java; emitting one subprogram followed by another sub-

program means the JVM will execute the first, then the second, resulting in a code template

resembling:

δ1; δ2

In terms of possible interleavings we end up with two possible cases:

• Interruption at some point γ during (or immediately after) the first subprogram, in which

case we transition to a new subprogram δ′ = (γ; δ2): the sequence composed of the remainder

of δ1 – that is, γ – followed by δ2.

• We finished δ1 (so Finaljolog(δ1, s) holds) and then define the transition entirely in terms of

the subprogram δ2.

Transjolog(δ1; δ2, s, δ
′, s′)⇒ ∃γ (δ′ = (γ; δ2) ∧ Transjolog(δ1, s, γ, s′))∨

(Finaljolog(δ1, s) ∧ Transjolog(δ2, s, δ′, s′))

For the opposite direction assume we have program δ1 = β; γ. If we have successfully emitted

the subprogram β in the past (that is δ1 successfully transitioned as far as γ), then we are at a

state δ′ = (γ; δ2) now.

Transjolog(δ1; δ2, s, δ
′, s′)⇐ ∃γ (δ′ = (γ; δ2) ∧ Transjolog(δ1, s, γ, s′))

Alternatively, if we have finished executing δ1 (so it is ‘final’) and we successfully execute δ2

then we will transition to some (possibly empty) subprogram δ′ from here:

Transjolog(δ1; δ2, s, δ
′, s′)⇐ Finaljolog(δ1, s) ∧ Transjolog(δ2, s, δ′, s′)

The conjunction of these two assertions satisfies our equivalence:

Transjolog(δ1; δ2, s, δ
′, s′) ≡ ∃γ (δ′ = (γ; δ2) ∧ Transjolog(δ1, s, γ, s′))∨

(Finaljolog(δ1, s) ∧ Transjolog(δ2, s, δ′, s′))
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Similarly, a sequence is only ‘final’ if all subprograms in the sequence are also final (that is, it

is reduced to a sequence of empty programs). Hence:

Finaljolog(δ1; δ2, s)⇒ Finaljolog(δ1, s) ∧ Finaljolog(δ2, s)

Or in the opposite direction, if two consecutive subprograms δ1 and δ2 are final, then their

conjunction clearly is too:

Finaljolog(δ1; δ2, s)⇐ Finaljolog(δ1, s) ∧ Finaljolog(δ2, s)

7.3.5 Nondeterministic Branch (ndet)

The implementation of ndet in Congolog is trivially simple given the sophistication of the construct

– either the first program works or the second does. While the same elegance is not possible with

Java bytecode, we can see that at a higher ‘meta’ level we achieve the same thing. Observe in the

following pseudocode that our implementation of ndet will run δ1 and then break out of the ndet

statement (with the trailing goto). However if δ1 should fail then an explicit exception handler

transfers control to δ2. Further, another exception handler will catch any failure with δ2, so if

this also fails then the entire ndet will fail. Thus ndet will only transition if at least one of its

subprograms can transition. Formalising this notion may be more illustrative, so we do this now.

Proof: We prove Jolog ’s ndet implementation implies the Congolog definition by cases:

• Case 1 – δ1 succeeds: then ndet will execute δ1 followed by a goto and successfully terminate

– Transjolog holds.

• Case 2 – δ1 fails: then δ1 will fail (throw an exception) which will be caught by the first

exception handler and control is transferred to δ2. There are now two additional subcases to

consider:

– Case 2a – δ2 succeeds: then control will proceed to the trailing goto and the ndet will

still succeed – Transjolog holds.

– Case 2b – δ2 fails: then the second exception handler will transfer control to the

failPoint and so the entire ndet will fail – Transjolog does not hold.

Thus Transjolog(ndet(δ1|δ2), s, δ′, s′) will succeed if and only if either δ1 or δ2 succeed.

Transjolog(ndet(δ1|δ2), s, δ′, s′) ≡ Trans(δ1, s, δ
′, s′) ∨ Trans(δ2, s, δ′, s′)
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We can make a similar argument about the completion of an ndet statement too: it will be final

if either of the two subprograms is final (which ever program the ndet ‘chooses’ and successfully

runs):

Final(ndet(δ1|δ2), s) ≡ Final(δ1, s) ∨ Final(δ2, s)

Listing 7.3: simplified code template for nondeterministic branch (ndet)

1 doNdet1 :

2 δ1

3 goto endNdet

4

5 doNdet2 :

6 δ2

7 goto endNdet

8

9 f a i l P o i n t :

10 throw except ion // backtrack beyond the ndet statement

11

12 endNdet :

with the corresponding exception table:

from to with

doNdet1 doNdet2 doNdet2

doNdet2 handler failPoint

endNdet endScope handler

In the opposite direction we note that if δ1 can transition then the code template above will

execute δ1 then a goto (which does not fail). That is, the only thing preventing δ1 (and so the ndet

too) from executing successfully in the above ndet code is δ1 itself, so:

Transjolog(ndet(δ1|δ2), s, δ′, s′)⇐ Trans(δ1, s, δ
′, s′)

Otherwise δ1 fails, which in Jolog means it throws an exception. There is clearly an exception

handler in this case that will transfer control directly to δ2. If this program can run successfully

then it will execute and then proceed to its own goto statement – ndet works once again:

Transjolog(ndet(δ1|δ2), s, δ′, s′)⇐ ¬Trans(δ1, s, δ′, s′) ∧ Trans(δ2, s, δ′, s′)
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Finally we again note that if δ2 also fails, then control is handed to the fail point, which leads

the entire ndet to fail. Thus we can conclude that the two cases are the only ones capable of

leading the ndet to succeed. The conjunction of these two claims provides our equivalence:

Transjolog(ndet(δ1|δ2), s, δ′, s′)⇐ Trans(δ1, s, δ
′, s′) ∨ (¬Trans(δ1, s, δ′, s′) ∧ Trans(δ2, s, δ′, s′))

Once again we assert that the same argument applies to whether ndet is Final and so we have

equivalence here too.

7.3.6 Nondeterministic Choice of Arguments (pick)

The code for pick behaves in much the same way as for ndet – particularly in regard to saving and

restoring the initial state, running the inner program and then storing a dummy state over the

top for maintaining the backtrack id. The major distinction between these constructs is that pick

has a constant code size – it sends the backtrack id directly to the fluent store which returns the

next binding through internal phenomena. Ndet on the other hand uses the backtrack id locally,

so code size grows linearly with the number of alternative programs.

Listing 7.4: simplified code template for the pick construct

1 p ick :

2 x = j o l o g f l u e n t s t o r e . getNextBinding ( type ( v ) , backtrackId )

3 user :

4 δvx

5 end :

which is complemented with a similar exception table:

from to with

user endScope pick

Note that all notion of state has been omitted from this code template; the details of a working

implementation mean this template becomes far more convoluted without affecting its applicability

to the Trans and Final relations.

We now assert that the getNextBinding method contains boilerplate Java ‘Reflection’ code

for iterating through the values in the fluent store and potentially all constants for enumerable

types too. Given this, we assume that all potential variable bindings for variable v of type type(v)

will be returned if we repeatedly call this function whilst enumerating the backtrackId. Note that

calling this with a backtrackId higher than the number of bindings will cause the fluent store to

throw an exception, forcing the pick statement to backtrack.
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With this in mind we can observe that the pick code gets the first binding and attempts to

run the user program with this value. Note that v is just a local variable in our case, so δvx is the

same as any program δ except that in this case we expect (though do not require) it to somehow

use the binding x for variable v. If this succeeds then ,smgdl

Expressed more formally we can say: Attempting to execute Trans(pick(v){δ}, s, δ′, s′) will

lead the system to enumerate possible bindings until either one works (in which case we have

found a binding ∃x such that the subprogram δ transitions) or we run out of bindings. The latter

case will result in an unhandled exception thrown by the getNextBinding function, that is pick

fails (it does not transition). The former case produces the following result:

Transjolog(pick(v){δ}, s, δ′, s′)⇒ ∃x Transjolog(δ
v
x, s, δ

′, s′)

Similarly, pick depends solely on the user program to become final; if we know δ can transition

then we can also conclude that the form of the above equation holds for whether pick has completed:

Finaljolog(pick(v){δ}, s)⇒ ∃x Finaljolog(δ
v
x, s)

Alternatively, assume that the fluent store holds some value x such that the user program δvx

succeeds (Trans(δvx, s, δ
′, s′) holds). We know that pick will enumerate all values in the fluent

store, so by our assumption the enumeration will eventually find it. Thus Trans will succeed:

Transjolog(pick(v){δ}, s, δ′, s′)⇐ ∃x Transjolog(δ
v
x, s, δ

′, s′)

Finally, an equivalent argument to the one above holds for whether pick has completed:

Finaljolog(pick(v){δ}, s)⇐ ∃x Finaljolog(δ
v
x, s)

Thus our pick is equivalent to Congolog ’s definition:

Transjolog(pick(v){δ}, s, δ′, s′) ≡ ∃x Transjolog(δ
v
x, s, δ

′, s′)

Finaljolog(pick(v){δ}, s) ≡ ∃x Finaljolog(δ
v
x, s)
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7.3.7 Nondeterministic Iteration (Kleene star)

We first examine the following code template:

Listing 7.5: code template for nondeterministic iteration (Kleene star)

1 // try zero execut i on s f i r s t . . .

2 goto endKleene

3

4 //do the program once more . . .

5 s ta r tK l e ene :

6 δ // run the user program

7

8 endKleene :

9

10 catch except ion from endKleene to endScope with s ta r tK l e ene

Upon first encountering this code, the JVM will jump to the end and trivially complete the

subprogram. We can consider this the base case of an induction:

Trans(δ∗, s, δ′, s′)⇒ γ = δ ∧ (δ′ = γ; δ∗) ∧ Trans(δ, s, δ, s′)

That is, we need not transition the user program δ at all, and the overall system transitions to a

state where its remaining code is the user program δ followed by the original Kleene program. If

this code is rerun then it now needs to execute δ one or more times5. This is perplexing at first; we

can think of this as saying that the first ‘execution’ does not run δ at all (δ transitions to itself),

but that the program transitions to a new program where zero-executions are no longer permitted.

This indicates that we have already tried this case. Under this interpretation we do not run δ′

just because it is the transitioned program – indeed this does not make sense since because our

system has finished transitioning and the Java code does not mutate or change in any way after

compilation. We simply note that we need to run δ one extra time if we backtrack to this point.

Now, if a subsequent error forces backtracking then it will be caught ‘inside’ the Kleene loop

(at startKleene) which proceeds to run the user program and then continue. Future errors are

handled in the same way: backtracking to this point and running the user program one more time,

so:

Trans(δ∗, s, δ′, s′)⇒ ∃γ (δ′ = γ; δ∗) ∧ Trans(δ, s, γ, s′)
5In common regular expression notation our program has transitioned from δ∗ to δ+.
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where γ may be nil to indicate that we have finished another execution of δ and that we can

execute zero or more in the future after backtracking to this point.

For the reverse direction we can instead consider γ to be some arbitrary length sequence of δ

programs. If we have already transitioned from a single δ to a sequence of them – as the Kleene

construct does – then we must have rerun the program several times (the length of the sequence

many). Thus if we have transitioned to γ then this is the same as transitioning from δ∗ to our

exact sequence γ. However the construct is happy to execute even further in the future, so we

append δ∗ to the transitioned program δ′ to indicate this.

Trans(δ∗, s, δ′, s′)⇐ ∃γ (δ′ = γ; δ∗) ∧ Trans(δ, s, γ, s′)

We can also see that this implementation allows an arbitrary number of executions of δ –

including zero – so this construct is trivially final.

Final(δ∗, s) ≡ True

As a final note, observe that only one exception handler (the mechanism for backtracking)

occurs in this code template and that serves to catch ‘future’ exceptions. This means that an

exception within the user program δ will not be caught by this operator and so nondeterministic

iteration can fail. These semantics not only reduce code size, but also turn out to be a useful

feature of this operator, particularly when used in the implementation of while loops.

7.3.8 Function Calls

The implementation of function calls has been introduced earlier, however, here we are concerned

with the idea of a ‘function call’ as it relates to first-order logic (the Situation Calculus). Previous

Gologs have done this as macro expansion, we argue that essentially the same process is being

performed by the JVM. Let us consider some function ρ(~x) defined by the predicate:

proc(ρ(~x), δ)

When invoking a function the JVM jumps to the function’s enclosed code – its definition –

and runs this code too. The function call itself is thus irrelevant to the Situation Calculus; it is

simply a mechanism for breaking up code. Note this approach allows recursive functions too. We

now suggest that transitioning on the function call is equivalent to transitioning on the function
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definition:

Transjolog(ρ(~x), s, δ′, s′) ≡ proc(ρ(~x), δ) ∧ Transjolog(δ, s, δ′, s′)

Similarly, if we are replacing execution of the function call with execution of the function body

then the same claim holds for whether a program is final:

Finaljolog(ρ(~x), s, δ′, s′) ≡ proc(ρ(~x), δ) ∧ Finaljolog(δ, s, δ′, s′)

Finally, we observe that local variables are not for free – we need to distinguish them for the

sake of the Situation Calculus (although this is clearly given to us within the JVM). We discharge

this proof obligation with naming rules that effectively map local variables within a scope to unique

names. We know that variable names are unique within their scope so it suffices for a variable

with local name v, of type t and at scope depth d to have a corresponding name in the Situation

Calculus composed of these components:

v t d

Note that there are many solutions to this problem, however, this should be sufficient indication

that the problem is not particularly hard or important.
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7.3.9 Others

It may have been noted that a few reasonably important constructs are missing from the above

discussion: if, while and for statements. Due to the complications of nondeterministic execution

we adopt the Congolog approach and compile these in terms of the ndet and Kleene operators.

This has two major benefits:

• ndet and Kleene have more intuitive semantics in the presence of backtracking; what does it

mean to backtrack into a while loop or an if statement anyway?

• it discharges proof obligations – we know ndet and Kleene work and we know sequence can

compose subprograms. Why not exploit this?

These advantages are not for free. The code for if, while and for statements is longer and more

complicated now, and worse, involves duplicate evaluation of the condition (particularly so that

ndet doesn’t try to execute the alternative just because the if failed). These failings will generally

only be evident in conditions that involve function calls. However these functions threaten to

backtrack too, so they really should be reevaluated anyway. Note also that this means that if,

while and for statements implemented this way cannot appear in static functions – there is no

backtrack stack for them to rely on. Accordingly, these constructs use the original definitions –

more intuitive and condensed code – when used in a static context. Note that static functions are

assumed to be for setup and handler code (like the main function) since they do not have access to

fluents or nondeterminism, so we omit their proof obligations as being irrelevant to the Situation

Calculus.

81



Chapter 8

Conclusions

This thesis has been a great opportunity to complement my undergraduate studies with yet un-

explored fields, particularly with concepts of compilers. It has also provided me with an excuse

to work on a large project incorporating both C++ and Java development and to research and

implement new language constructs for the Java Virtual Machine. Breaking Prolog’s monopoly on

some amazing features like nondeterministic variable instantiation and backtracking into functions

that have terminated – or even Python’s tuples – has been a turbulent but rewarding experience.

I have also developed a much greater understanding of – and appreciation for – the design and

flexibility of Java as a language and the overall operation of the JVM.

At this point we reflect on what has been achieved:

• A compiler capable of compiling a significant subset of the Java grammar into Java bytecode

(with assistance from Jasmin).

• The successful introduction of nondeterminism to the JVM.

• An argument for equivalence between our new language Jolog and the Situation Calculus.

• The successful introduction of types and type checking to our new Golog variant.

• The enhancement of existing communication protocols and the introduction of new primitives

to encourage their use.

• A more familiar syntax – including sugar for tuples and I/O operations – and better syntactic

checks during compilation.

• Documentation of some of the more important features of Java, Jasmin and Boost::spirit.

We observe that this perfectly complements our initial aims.
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8.1 Future Work

Jolog can do a significant subset of things that one might want from a cognitive robotics language.

However there are still many things that would make welcome extensions:

• Introducing Prolog-style pattern matching and variable substitution for function calls.

• Expanding the object-oriented nature of the language, including resolving the unclear dy-

namics of static fluents.

• Enhanced type-checking, especially by enforcing tuple types and introducing type hierarchies

to eliminate spurious typecasts.

• Theorem proving or other mathematical conclusions in regard to the behaviour of Jolog

programs.

• Replace the Fluent resolution mechanism with ‘fluent templates’. That is, dynamic fluents

are still allowed, but their name (and possibly their type) must conform to some template

definition. This would make name resolution much stricter, typing much easier (and safer)

and free up the compiler to happily use predicates as fluent names and values.

• Developing decision-theoretic, stochastic functions and search features available from previ-

ous Gologs, particularly Readylog.
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Appendix A

Jolog Grammars

Listing A.1: JologGrammar.h

1 /∗
2 ∗ JologGrammar . h

3 ∗
4 ∗ Created on : 2/08/2009

5 ∗ Author : t imothyc

6 ∗/
7

8 #ifndef JOLOGGRAMMAR

9 #define JOLOGGRAMMAR

10

11 #include <s t r i ng>

12 #include <sstream>

13 #include <c s t r i ng>

14

15 #include ”GrammarUtility . h”

16 #include ”LiteralGrammar . h”

17 #include ” Ident i f ierGrammar . h”

18 #include ”TypeNameGrammar . h”

19 #include ”ExpressionGrammar . h”

20 #include ”StatementGrammar . h”

21 #include ”SkipGrammar . h”

22
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23 using std : : s t r i n g ;

24 using namespace boost : : s p i r i t : : c l a s s i c ;

25

26 class JologGrammar : public grammar<JologGrammar> {
27 public :

28 typedef p o s i t i o n i t e r a t o r <const char∗> i t e r a t o r t ;

29 typedef n o d e i t e r d a t a f a c t o r y<int> f a c t o r y t ;

30

31 template <typename ScannerT>

32 class d e f i n i t i o n {
33 public :

34 typedef ScannerT scanne r t ;

35 d e f i n i t i o n ( JologGrammar const& s e l f ) :

36 exp r e s s i on ( s e l f . getErrorReporter ( ) ) , statement ( s e l f . getErrorReporter ( ) ) {
37

38 j o l o g f i l e

39 = ! j o l og package

40 >> ∗ j o l o g im po r t

41 >> ! j o l o g a g e n t

42 >> ( end p | ( lexeme d [ +anychar p ] [ s e l f . r epo r t ( f i l e t a g ) ] >> nothing p ) )

43 ;

44

45 jo l og package

46 = root node d [ s t r p ( ” package ” ) ]

47 >> ( lexeme d [ l i s t p (

48 token node d [ +(alnum p | ’ ’ ) ] ,

49 no node d [ ch p ( ’ . ’ ) ]

50 ) ]

51 | e r r o r [ s e l f . r epo r t ( package tag ) ]

52 )

53 >> ( no node d [ ch p ( ’ ; ’ ) ] | e r r o r [ s e l f . r epo r t ( exp r e s s i on s t a t ement tag ) ] )

54 ;

55

56 j o l og i mpo r t

85



57 = root node d [ s t r p ( ” import ” ) ]

58 >> ( lexeme d [ l i s t p (

59 token node d [ +(alnum p | ’ ’ | ’∗ ’ ) ] ,

60 no node d [ ch p ( ’ . ’ ) ] )

61 ]

62 | e r r o r [ s e l f . r epo r t ( import tag ) ]

63 )

64 >> ( no node d [ ch p ( ’ ; ’ ) ] | e r r o r [ s e l f . r epo r t ( exp r e s s i on s t a t ement tag ) ] )

65 ;

66

67 j o l o g a g e n t

68 = ∗ p r e f i x >> s t r p ( ” agent ” )

69 >> ( typeName | e r r o r [ s e l f . r epo r t ( type tag ) ] )

70 >> ( ∗( implements | extends )

71 >> no node d [ ch p ( ’{ ’ ) ] // | ( er ror [ s e l f . r e p o r t ( c l a s s t a g ) ] /∗>> not h ing p ∗/))

72 >> ∗( j o l o g a g e n t c o n t e n t s ) // | ((+( error − ’} ’ ) ) [ s e l f . r e p o r t ( c l a s s t a g ) ] ) )

73 >> no node d [ ch p ( ’} ’ ) ] )

74 | e r r o r [ s e l f . r epo r t ( agent tag ) ]

75 ;

76

77 implements

78 = root node d [ s t r p ( ” implements ” ) ] >> ( typeName | e r r o r [ s e l f . r epo r t ( implements tag ) ] ) ;

79

80 extends

81 = root node d [ s t r p ( ” extends ” ) ] >> ( typeName | e r r o r [ s e l f . r epo r t ( extends tag ) ] ) ;

82

83 j o l o g a g e n t c o n t e n t s

84 = a c t i o n d e f i n i t i o n

85 | f u n c t i o n d e f i n i t i o n

86 | f l u e n t d e f i n i t i o n

87 | lexeme d [ +(anychar p − ’} ’ − e o l p ) ] [ s e l f . r epo r t ( ag en t con t en t s t ag ) ]

88 ;

89

90 a c t i o n d e f i n i t i o n
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91 = ∗ p r e f i x

92 >> ( s t r p ( ” pr im act ion ” ) | ” exog ac t i on ” | ” s e n s i n g a c t i o n ” )

93 //we e i t h e r have a p a t t e r n ( f o r e x o g a c t i o n s ) or a f u n c t i o n : name( args ) ( f o r p r i m a c t i o n s )

94 >> ( ( ( r eg ex pa t t e rn

95 | ( i d e n t i f i e r

96 >> no node d [ ch p ( ’ ( ’ ) ]

97 >> ! l i s t p ( pa ramet e r de f i n i t i on , no node d [ ch p ( ’ , ’ ) ] )

98 >> no node d [ ch p ( ’ ) ’ ) ] )

99 )

100 // >> ( ( no node d [ ch p ( ’ ( ’ ) ] >> ! l i s t p ( p a r a m e t e r d e f i n i t i o n , no node d [ ch p ( ’ , ’ ) ] ) >> no node d [ ch p ( ’ ) ’ ) ] ) ) // | ( er ror [ s e l f . parameter error ] >> no th in g p ))

101 >> no node d [ ch p ( ’{ ’ ) ]

102 >> ∗( ( ” p o s s i b l e ”

103 >> ( exp r e s s i on | e r r o r [ s e l f . r epo r t ( a c t i o n d e f i n i t i o n t a g ) ] )

104 >> ( no node d [ ch p ( ’ ; ’ ) ] | e r r o r [ s e l f . r epo r t ( exp r e s s i on s t a t ement tag ) ] )

105 )

106

107 | ( ” s e t ”

108 >> ( exp r e s s i on | e r r o r [ s e l f . r epo r t ( a c t i o n d e f i n i t i o n t a g ) ] )

109 //>> ( no node d [ ch p ( ’= ’) ] | error [ s e l f . r e p o r t ( a c t i o n d e f i n i t i o n t a g ) ] )

110 //>> ( e x p r e s s i o n | error [ s e l f . r e p o r t ( a c t i o n d e f i n i t i o n t a g ) ] )

111 >> ! ( s t r p ( ” i f ” ) >> exp r e s s i on )

112 >> ( no node d [ ch p ( ’ ; ’ ) ] | e r r o r [ s e l f . r epo r t ( exp r e s s i on s t a t ement tag ) ] )

113 )

114

115 | ( ” send ”

116 >> ( statement | e r r o r [ s e l f . r epo r t ( a c t i o n d e f i n i t i o n t a g ) ] )

117 )

118

119 | ( ” re turn ”

120 >> ( exp r e s s i on | e r r o r [ s e l f . r epo r t ( a c t i o n d e f i n i t i o n t a g ) ] )

121 >> ( no node d [ ch p ( ’ ; ’ ) ] | e r r o r [ s e l f . r epo r t ( exp r e s s i on s t a t ement tag ) ] )

122 )

123 )

124 >> ( no node d [ ch p ( ’} ’ ) ] | e r r o r [ s e l f . r epo r t ( a c t i o n d e f i n i t i o n t a g ) ] )
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125 )

126 | e r r o r [ s e l f . r epo r t ( a c t i o n d e f i n i t i o n t a g ) ]

127 )

128 ;

129

130 f l u e n t d e f i n i t i o n

131 = ∗ p r e f i x >> typeName

132 >> i d e n t i f i e r

133 >> ! ( no node d [ ch p ( ’ ( ’ ) ]

134 >> ! l i s t p ( expres s i on , no node d [ ch p ( ’ , ’ ) ] )

135 >> no node d [ ch p ( ’ ) ’ ) ]

136 ) // | ( er ror [ s e l f . v a r i a b l e e r r o r ] /∗>> no th in g p ∗/))

137 >> ! ( ’= ’ >> ( i n i t i a l i s e r | ( e r r o r [ s e l f . r epo r t ( e x p r e s s i o n t a g ) ] /∗>> no th ing p ∗/ ) ) )

138 >> ( no node d [ ch p ( ’ ; ’ ) ] | eps p [ s e l f . r epo r t ( exp r e s s i on s t a t ement tag ) ] )

139 ;

140

141 f u n c t i o n d e f i n i t i o n

142 = ! pr ivacy >> ∗ p r e f i x >> typeName >> i d e n t i f i e r

143 >> ( ( no node d [ ch p ( ’ ( ’ ) ] >> ! l i s t p ( pa ramet e r de f i n i t i on , no node d [ ch p ( ’ , ’ ) ] ) >> no node d [ ch p ( ’ ) ’ ) ] ) ) // | error [ s e l f . r e p o r t ( p a r a m e t e r d e f i n i t i o n t a g ) ] )

144 >> no node d [ ch p ( ’{ ’ ) ]

145 >> ∗( statement )

146 >> ( no node d [ ch p ( ’} ’ ) ] | e r r o r [ s e l f . r epo r t ( s cope tag ) ] )

147 ;

148

149 p a r a m e t e r d e f i n i t i o n

150 = ∗( s t r p ( ” t r a n s i e n t ” ) ) >> typeName >> i d e n t i f i e r ;

151

152 p r e f i x

153 = s t r p ( ” f i n a l ” ) | ” s t a t i c ” | ” abs t r a c t ” ;

154

155 i n i t i a l i s e r

156 = ( root node d [ ch p ( ’{ ’ ) ] >> i n f i x n o d e d [ ! l i s t p ( i n i t i a l i s e r , ’ , ’ ) ] >> ( no node d [ ch p ( ’} ’ ) ] | ( e r r o r [ s e l f . r epo r t ( i n i t i a l i s e r t a g ) ] /∗>> no th in g p ∗/ ) ) )

157 | exp r e s s i on ; // zero a l l o w e d ?

158
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159 pr ivacy

160 = s t r p ( ” pub l i c ” ) | ” p r i va t e ” | ” protec ted ” ;

161

162 r egex pa t t e rn //TODO do we want to use escapes ? to a l l o w ” f o r example !

163 = no node d [ ch p ( ’ ” ’ ) ] >> token node d [ lexeme d [ ∗( anychar p − ’ ” ’ ) ] ] >> no node d [ ch p ( ’ ” ’ ) ] ;

164

165 e r r o r

166 //= lexeme d [ +anychar p ]

167 //= ( anychar p − space p )

168 //= token node d [ ( +(alnum p | ’ ’ ) | ( ( ch p ( ’ [ ’ ) | ’{ ’ | ’ ( ’ ) /∗>> ∗( ch p ( ’ ] ’ ) | ’} ’ | ’ ) ’ )∗/ ) | anychar p ) ]

169 = token node d [ +(alnum p | space p | ’ ’ )

170 | ( ( ! ( ch p ( ’ [ ’ ) | ’{ ’ | ’ ( ’ ) ) >> ∗( anychar p − ( ch p ( ’ ] ’ ) | ’} ’ | ’ ) ’ ) ) >> ( ch p ( ’ ] ’ ) | ’} ’ | ’ ) ’ ) )

171 ]

172 ;

173 }
174

175 ru le<scanner t , pa r s e r tag<f i l e t a g > > const& s t a r t ( ) const {
176 return j o l o g f i l e ;

177 }
178

179 private :

180 LiteralGrammar l i t e r a l ;

181 Ident i f ierGrammar i d e n t i f i e r ;

182 ExpressionGrammar exp r e s s i on ;

183 StatementGrammar statement ;

184 TypeNameGrammar typeName ;

185

186 ru le<scanner t , pa r s e r tag<f i l e t a g > > j o l o g f i l e ;

187 ru le<scanner t , pa r s e r tag<package tag> > j o l og package ;

188 ru le<scanner t , pa r s e r tag<import tag> > j o l o g im po r t ;

189 ru le<scanner t , pa r s e r tag<agent tag> > j o l o g a g e n t ;

190 ru le<scanner t , pa r s e r tag<implements tag> > implements ;

191 ru le<scanner t , pa r s e r tag<extends tag> > extends ;

192 ru le<scanner t , pa r s e r tag<agent content s tag> > j o l o g a g e n t c o n t e n t s ;
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193 ru le<scanner t , pa r s e r tag<a c t i o n d e f i n i t i o n t a g> > a c t i o n d e f i n i t i o n ;

194 ru le<scanner t , pa r s e r tag<f l u e n t d e f i n i t i o n t a g > > f l u e n t d e f i n i t i o n ;

195 ru le<scanner t , pa r s e r tag<f u n c t i o n d e f i n i t i o n t a g> > f u n c t i o n d e f i n i t i o n ;

196 ru le<scanner t , pa r s e r tag<p a r a m e t e r d e f i n i t i o n t a g> > p a r a m e t e r d e f i n i t i o n ;

197 ru le<scanner t , pa r s e r tag<pr ivacy tag> > pr ivacy ;

198 ru le<scanner t , pa r s e r tag<p r e f i x t a g> > p r e f i x ;

199 ru le<scanner t , pa r s e r tag<s t r i n g t a g> > r eg ex pa t t e rn ;

200 ru le<scanner t , pa r s e r tag< i n i t i a l i s e r t a g > > i n i t i a l i s e r ;

201

202 ru le<scanner t , pa r s e r tag<e r r o r t a g> > e r r o r ;

203 } ;

204

205 JologGrammar ( std : : ostream& stder r , bool& er ro rF lag ) :

206 s t d e r r ( s t d e r r ) , e r r o rF lag ( e r r o rF lag ) {}
207

208 ErrorMessage getErrorReporter ( ) const {
209 return ErrorMessage ( f i l e t a g , s tde r r , e r r o rF lag ) ;

210 }
211

212 ErrorMessage r epor t ( ParserTags tag ) const {
213 return ErrorMessage ( tag , s tde r r , e r r o rF lag ) ;

214 }
215

216 t r e e p a r s e i n f o<i t e r a t o r t , f a c t o r y t> par s eS t r i ng ( const char∗ s , s t r i n g f i l ename ) {
217 i t e r a t o r t begin ( s , s+s t r l e n ( s ) , f i l ename ) ;

218 i t e r a t o r t end ;

219 SkipGrammar sk ip ;

220 return as t pa r s e<f a c t o r y t >(begin , end , ∗ this , s k ip ) ;

221 }
222

223 private :

224 std : : ostream& s t d e r r ;

225 bool& er ro rF lag ;

226 } ;
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227

228 #endif

Listing A.2: StatementGrammar.h

1 /∗
2 ∗ StatementGrammar . h

3 ∗
4 ∗ Created on : 2/08/2009

5 ∗ Author : t imothyc

6 ∗/
7

8 #ifndef STATEMENTGRAMMAR

9 #define STATEMENTGRAMMAR

10

11 #include <s t r i ng>

12 #include <sstream>

13

14 #include ”GrammarUtility . h”

15 #include ”ExpressionGrammar . h”

16 #include ” Ident i f ierGrammar . h”

17

18 using std : : s t r i n g ;

19 using namespace boost : : s p i r i t : : c l a s s i c ;

20

21 class StatementGrammar : public grammar<StatementGrammar> {
22 private :

23 ErrorMessage e r ro rRepor t e r ;

24

25 public :

26 typedef p o s i t i o n i t e r a t o r <const char∗> i t e r a t o r t ;

27 typedef n o d e i t e r d a t a f a c t o r y<int> f a c t o r y t ;

28

29 StatementGrammar ( ErrorMessage e ) : e r ro rRepor t e r ( e ) {}
30

31 ErrorMessage r epor t ( ParserTags tag ) const {
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32 return e r ro rRepor t e r . r epo r t ( tag ) ;

33 }
34

35 template <typename ScannerT>

36 class d e f i n i t i o n {
37 public :

38 typedef ScannerT scanne r t ;

39 d e f i n i t i o n ( StatementGrammar const& s e l f ) : e xp r e s s i on ( s e l f . e r ro rRepor t e r ) {
40

41 scope //may i n f i n i t e loop . . . remove no t h ing p

42 = root node d [ ch p ( ’{ ’ ) ]

43 >> ∗( statement ) // /∗ | ( ( er ror − ’} ’ ) [ s e l f . s t a t e m e n t e r r o r ] ∗//∗>> no th in g p ∗/))

44 >> ( no node d [ ch p ( ’} ’ ) ] ) ; // | ( ( er ror − ’} ’ ) [ s e l f . s t a t e m e n t e r r o r ] /∗>> no th in g p ∗/ ) ) ;

45

46 statement

47 = jump statement

48 | l o c a l v a r i a b l e d e f i n i t i o n

49 | i f s t a t e m e n t

50 | whi l e s ta tement

51 | f o r s t a t ement

52 | holds

53 | ndet

54 | k l eene

55 | pick

56 | scope

57 | ! e xp r e s s i on >> ( no node d [ ch p ( ’ ; ’ ) ] ) // | (+alnum p ) [ s e l f . r e p o r t ( e x p r e s s i o n s t a t e m e n t t a g ) ] )

58 | ((+( alnum p − ’} ’ ) ) [ s e l f . r epo r t ( exp r e s s i on s t a t ement tag ) ] )

59 ;

60

61 i f s t a t e m e n t

62 = root node d [ s t r p ( ” i f ” ) ] >> no node d [ ch p ( ’ ( ’ ) ] >> exp r e s s i on >> no node d [ ch p ( ’ ) ’ ) ]

63 >> scope

64 >> ! e l s e s t a t e m e n t ;

65

92



66 e l s e s t a t e m e n t

67 = no node d [ s t r p ( ” e l s e ” ) ] >> ( i f s t a t e m e n t | scope ) ;

68

69 whi l e s ta tement

70 = root node d [ s t r p ( ” whi l e ” ) ] >> no node d [ ch p ( ’ ( ’ ) ] >> exp r e s s i on >> no node d [ ch p ( ’ ) ’ ) ]

71 >> scope

72 ;

73

74 f o r s t a t ement

75 = no node d [ s t r p ( ” f o r ” ) >> ’ ( ’ ]

76 >> ( ( ! e xp r e s s i on >> ’ ; ’ >> ! e xp r e s s i on >> ’ ; ’ >> ! e xp r e s s i on ) ) // | error [ s e l f . r e p o r t ( f o r t a g ) ] )

77 >> ch p ( ’ ) ’ )

78 >> scope

79 ;

80

81 jump statement

82 = root node d [ s t r p ( ” re turn ” ) ]

83 >> ! e xp r e s s i on

84 >> ( no node d [ ch p ( ’ ; ’ ) ] | ((+alnum p ) [ s e l f . r epo r t ( exp r e s s i on s t a t ement tag ) ] >> nothing p ) )

85 ;

86

87 l o c a l v a r i a b l e d e f i n i t i o n

88 = ∗( s t r p ( ” t r a n s i e n t ” ) )

89 >> typeName

90 >> i d e n t i f i e r

91 >> ! ( ( ’= ’ >> exp r e s s i on )

92 | ∗( ’ , ’ >> i d e n t i f i e r )

93 )

94 >> no node d [ ch p ( ’ ; ’ ) ]

95 ;

96

97 ndet

98 = root node d [ s t r p ( ” ndet ” ) ]

99 >> no node d [ ch p ( ’ ( ’ ) ]
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100 >> l i s t p ( statement , no node d [ ch p ( ’ | ’ ) ] )

101 >> no node d [ ch p ( ’ ) ’ ) ]

102 ;

103

104 pick

105 = root node d [ s t r p ( ” p ick ” ) | ”some” | ” a l l ” ]

106 >> no node d [ ch p ( ’ ( ’ ) ] >> typeName >> i d e n t i f i e r >> no node d [ ch p ( ’ ) ’ ) ]

107 >> scope

108 ;

109

110 ho lds

111 = root node d [ ch p ( ’ ? ’ ) ]

112 >> no node d [ ch p ( ’ ( ’ ) ]

113 >> exp r e s s i on

114 >> no node d [ ch p ( ’ ) ’ ) >> ch p ( ’ ; ’ ) ]

115 ;

116

117 k l eene

118 = ( scope | exp r e s s i on )

119 >> root node d [ ch p ( ’∗ ’ ) ]

120 >> no node d [ ch p ( ’ ; ’ ) ]

121 ;

122

123 }
124

125 ru le<scanner t , pa r s e r tag<statement tag> > const& s t a r t ( ) const {
126 return statement ;

127 }
128

129 private :

130 Ident i f ierGrammar i d e n t i f i e r ;

131 TypeNameGrammar typeName ;

132 ExpressionGrammar exp r e s s i on ;

133
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134 ru le<scanner t , pa r s e r tag<scope tag> > scope ;

135 ru le<scanner t , pa r s e r tag<jump tag> > jump statement ;

136 ru le<scanner t , pa r s e r tag<statement tag> > statement ;

137 ru le<scanner t , pa r s e r tag<i f t a g> > i f s t a t e m e n t ;

138 ru le<scanner t , pa r s e r tag<e l s e t a g> > e l s e s t a t e m e n t ;

139 ru le<scanner t , pa r s e r tag<whi l e tag> > whi l e s ta tement ;

140 ru le<scanner t , pa r s e r tag<f o r t ag> > f o r s t a t ement ;

141 ru le<scanner t , pa r s e r tag<l o c a l t a g> > l o c a l v a r i a b l e d e f i n i t i o n ;

142 ru le<scanner t , pa r s e r tag<ndet tag> > ndet ;

143 ru le<scanner t , pa r s e r tag<k l eene tag> > k l eene ;

144 ru le<scanner t , pa r s e r tag<pick tag> > pick ;

145 ru le<scanner t , pa r s e r tag<ho lds tag> > holds ;

146

147 } ;

148

149 } ;

150

151 #endif

Listing A.3: ExpressionGrammar.h

1 /∗
2 ∗ ExpressionGrammar . h

3 ∗
4 ∗ Created on : 2/08/2009

5 ∗ Author : t imothyc

6 ∗/
7

8 #ifndef EXPRESSION GRAMMAR

9 #define EXPRESSION GRAMMAR

10

11 #include <s t r i ng>

12 #include <sstream>

13

14 #include ”GrammarUtility . h”

15 #include ”LiteralGrammar . h”
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16 #include ” Ident i f ierGrammar . h”

17 #include ”TypeNameGrammar . h”

18

19 using std : : s t r i n g ;

20 using namespace boost : : s p i r i t : : c l a s s i c ;

21

22 class ExpressionGrammar : public grammar<ExpressionGrammar> {
23 private :

24 ErrorMessage e r ro rRepor t e r ;

25

26 public :

27 typedef p o s i t i o n i t e r a t o r <const char∗> i t e r a t o r t ;

28 typedef n o d e i t e r d a t a f a c t o r y<int> f a c t o r y t ;

29

30 ExpressionGrammar ( ErrorMessage e ) : e r ro rRepor t e r ( e ) {}
31

32 ErrorMessage r epor t ( ParserTags tag ) const {
33 return e r ro rRepor t e r . r epo r t ( tag ) ;

34 }
35

36 template <typename ScannerT>

37 class d e f i n i t i o n {
38 public :

39 typedef ScannerT scanne r t ;

40 d e f i n i t i o n ( ExpressionGrammar const& s e l f ) {
41

42 exp r e s s i on

43 = l i s t p ( as s ignment expres s i on , l o n g e s t d [ s t r p ( ”<<” ) | ”>>” ] )

44 | ( token node d [ +(anychar p − ’ ; ’ − ’} ’ ) ] [ s e l f . r epo r t ( e x p r e s s i o n t a g ) ] ) //TODO assuming e x p r e s s i o n s ta tement . . . do error messages seem to work wi th t h i s ?

45 // | eps p [ s e l f . r e p o r t ( e x p r e s s i o n t a g ) ]

46 ;

47

48 as s i gnment expre s s i on

49 = c o n d i t i o n a l e x p r e s s i o n >> ! ( root node d [ a s s i gnment operator ] >> c o n d i t i o n a l e x p r e s s i o n ) ;
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50

51 as s ignment operator

52 = l o n g e s t d [ ( s t r p ( ”∗=” ) | ”/=” | ”%=” | ”+=” | ”−=” | ’= ’ ) ] ;

53

54 c o n d i t i o n a l e x p r e s s i o n

55 = l o g i c a l o r e x p r e s s i o n >> ! ( ’ ? ’ >> exp r e s s i on >> ’ : ’ >> exp r e s s i on ) ;

56

57 l o g i c a l o r e x p r e s s i o n

58 = l i s t p ( l o g i c a l a n d e x p r e s s i o n , root node d [ s t r p ( ” | | ” ) ] ) ;

59

60 l o g i c a l a n d e x p r e s s i o n

61 //= l i s t p ( i n c l u s i v e o r e x p r e s s i o n , ro o t no de d [ s t r p (”&&”) ] ) ;

62 = l i s t p ( r e l a t i o n a l e x p r e s s i o n , root node d [ s t r p ( ”&&” ) ] ) ;

63

64 r e l a t i o n a l e x p r e s s i o n

65 = l i s t p ( a d d i t i v e e x p r e s s i o n , l o n g e s t d [ ( s t r p ( ”==” ) | ”!=” | ’> ’ | ’< ’ | ”>=” | ”<=” ) ] ) ;

66

67 a d d i t i v e e x p r e s s i o n

68 = l i s t p ( m u l t i p l i c a t i v e e x p r e s s i o n , root node d [ ( ch p ( ’+’ ) | ’− ’ ) ] ) ;

69

70 m u l t i p l i c a t i v e e x p r e s s i o n

71 = l i s t p ( c a s t e x p r e s s i o n , root node d [ ( ch p ( ’∗ ’ ) | ’ / ’ | ’%’ ) ] ) ;

72

73 c a s t e x p r e s s i o n

74 = ∗( inner node d [ ’ ( ’ >> typeName >> ’ ) ’ ] ) >> unary expre s s i on ;

75

76 unary expre s s i on

77 = ( root node d [ s t r p ( ”++” ) | ”−−” ] >> unary expre s s i on )

78 | ( root node d [ ( ch p ( ’+’ ) | ’− ’ | ’ ! ’ ) ] >> c a s t e x p r e s s i o n )

79 | p o s t f i x e x p r e s s i o n

80 ;

81

82 /∗ p o s t f i x e x p r e s s i o n

83 = a t o m i c e x p r e s s i o n
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84 >> ∗( a r r a y r e f e r e n c e

85 | f u n c t i o n c a l l

86 | member reference

87 | ( s t r p (”++”) | ”−−”)

88 )

89 ; ∗/
90

91 p o s t f i x e x p r e s s i o n

92 = atomic expre s s i on

93 >> ∗( ( root node d [ ch p ( ’ [ ’ ) ] >> exp r e s s i on >> no node d [ ch p ( ’ ] ’ ) ] )

94 | ( root node d [ ch p ( ’ ( ’ ) ] >> ! l i s t p ( as s ignment expres s i on , no node d [ ch p ( ’ , ’ ) ] ) >> no node d [ ch p ( ’ ) ’ ) ] )

95 | ( root node d [ ch p ( ’ . ’ ) ] >> p o s t f i x e x p r e s s i o n )

96 | ( root node d [ s t r p ( ”++” ) | ”−−” ] )

97 )

98 ;

99

100 /∗ a r r a y r e f e r e n c e

101 = roo t no de d [ ch p ( ’ [ ’ ) ]

102 >> e x p r e s s i o n

103 >> no node d [ ch p ( ’ ] ’ ) ]

104 ;

105

106 f u n c t i o n c a l l

107 = roo t no de d [ ch p ( ’ ( ’ ) ]

108 >> ! l i s t p ( ass i gnment expres s ion , no node d [ ch p ( ’ , ’ ) ] )

109 >> no node d [ ch p ( ’ ) ’ ) ]

110 ;

111

112 member reference

113 = roo t no de d [ ch p ( ’ . ’ ) ] >> p o s t f i x e x p r e s s i o n ; ∗/
114

115 a tomic expre s s i on

116 = l i t e r a l

117 | ( root node d [ s t r p ( ”new” ) ] >> typeName >> ch p ( ’ ( ’ ) >> ! l i s t p ( c o n d i t i o n a l e x p r e s s i o n , no node d [ ch p ( ’ , ’ ) ] ) >> no node d [ ch p ( ’ ) ’ ) ] )
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118 | ( root node d [ s t r p ( ”new” ) ] >> typeName >> ch p ( ’ [ ’ ) >> c o n d i t i o n a l e x p r e s s i o n >> no node d [ ch p ( ’ ] ’ ) ] >> ∗( s t r p ( ” [ ] ” ) ) )

119 | someAll

120 | i d e n t i f i e r

121 | tup l e

122 | ( no node d [ ch p ( ’ ( ’ ) ] >> root node d [ exp r e s s i on ] >> no node d [ ch p ( ’ ) ’ ) ] )

123 ;

124

125 tup l e

126 = root node d [ ch p ( ’ ( ’ ) ]

127 >> exp r e s s i on >> +(no node d [ ch p ( ’ , ’ ) ] >> exp r e s s i on ) // t u p l e s need a r i t y > 1

128 >> no node d [ ch p ( ’ ) ’ ) ]

129 ;

130

131 someAll

132 = root node d [ s t r p ( ”some” ) | ” a l l ” ]

133 >> no node d [ ch p ( ’ ( ’ ) ]

134 >> typeName

135 >> i d e n t i f i e r

136 >> no node d [ ch p ( ’ | ’ ) ]

137 >> exp r e s s i on

138 >> no node d [ ch p ( ’ ) ’ ) ]

139 ;

140

141 }
142

143 ru le<scanner t , pa r s e r tag<expr e s s i on tag> > const& s t a r t ( ) const {
144 return exp r e s s i on ;

145 }
146

147 private :

148 LiteralGrammar l i t e r a l ;

149 Ident i f ierGrammar i d e n t i f i e r ;

150 TypeNameGrammar typeName ;

151
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152 ru le<scanner t , pa r s e r tag<expr e s s i on tag> > exp r e s s i on ;

153 ru le<scanner t , pa r s e r tag<as s i gnment expre s s i on tag> > as s i gnment expre s s i on ;

154 ru le<scanner t , pa r s e r tag<as s ignment operator tag> > as s ignment operator ;

155 ru le<scanner t , pa r s e r tag<c o n d i t i o n a l e x p r e s s i o n t a g> > c o n d i t i o n a l e x p r e s s i o n ;

156 ru le<scanner t , pa r s e r tag<l o g i c a l o r e x p r e s s i o n t a g > > l o g i c a l o r e x p r e s s i o n ;

157 ru le<scanner t , pa r s e r tag<l o g i c a l a n d e x p r e s s i o n t a g> > l o g i c a l a n d e x p r e s s i o n ;

158 ru le<scanner t , pa r s e r tag<r e l a t i o n a l e x p r e s s i o n t a g> > r e l a t i o n a l e x p r e s s i o n ;

159 ru le<scanner t , pa r s e r tag<a d d i t i v e e x p r e s s i o n t a g> > a d d i t i v e e x p r e s s i o n ;

160 ru le<scanner t , pa r s e r tag<m u l t i p l i c a t i v e e x p r e s s i o n t a g> > m u l t i p l i c a t i v e e x p r e s s i o n ;

161 ru le<scanner t , pa r s e r tag<c a s t e x p r e s s i o n t a g> > c a s t e x p r e s s i o n ;

162 ru le<scanner t , pa r s e r tag<unary expre s s i on tag> > unary expre s s i on ;

163 ru le<scanner t , pa r s e r tag<p o s t f i x e x p r e s s i o n t a g> > p o s t f i x e x p r e s s i o n ;

164 ru le<scanner t , pa r s e r tag<array tag> > a r r a y r e f e r e n c e ;

165 ru le<scanner t , pa r s e r tag<f unc t i on tag> > f u n c t i o n c a l l ;

166 ru le<scanner t , pa r s e r tag<member tag> > member reference ;

167 ru le<scanner t , pa r s e r tag<atomic expre s s i on tag> > a tomic expre s s i on ;

168 ru le<scanner t , pa r s e r tag<tup l e tag> > tup l e ;

169 ru le<scanner t , pa r s e r tag<pick tag> > someAll ;

170 } ;

171

172 } ;

173

174 #endif

Listing A.4: IdentifierGrammar.h

1 /∗
2 ∗ Identi f ierGrammar . h

3 ∗
4 ∗ Created on : 2/08/2009

5 ∗ Author : t imothyc

6 ∗/
7

8 #ifndef IDENTIFIER GRAMMAR

9 #define IDENTIFIER GRAMMAR

10
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11 #include <s t r i ng>

12 #include <sstream>

13

14 #include ”GrammarUtility . h”

15

16 using std : : s t r i n g ;

17 using namespace boost : : s p i r i t : : c l a s s i c ;

18

19 class Ident i f ierGrammar : public grammar<Identi f ierGrammar> {
20 public :

21 typedef p o s i t i o n i t e r a t o r <const char∗> i t e r a t o r t ;

22 typedef n o d e i t e r d a t a f a c t o r y<int> f a c t o r y t ;

23

24 template <typename ScannerT>

25 class d e f i n i t i o n {
26 public :

27 typedef ScannerT scanne r t ;

28 d e f i n i t i o n ( Ident i f ierGrammar const& s e l f ) {
29 i d e n t i f i e r

30 = no node d [∗ space p ] >> token node d [ lexeme d [ ( ( a lpha p | ’ ’ ) >> ∗( alnum p | ’ ’ ) ) ] ]

31 ;

32

33 }
34

35 ru le<scanner t , pa r s e r tag<i d e n t i f i e r t a g > > const& s t a r t ( ) const {
36 return i d e n t i f i e r ;

37 }
38

39 private :

40 ru le<scanner t , pa r s e r tag<i d e n t i f i e r t a g > > i d e n t i f i e r ;

41 } ;

42

43 } ;

44
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45

46 #endif

Listing A.5: TypeNameGrammar.h

1 /∗
2 ∗ TypeNameGrammar . h

3 ∗
4 ∗ Created on : 4/08/2009

5 ∗ Author : t imothyc

6 ∗/
7

8 #ifndef TYPENAMEGRAMMAR

9 #define TYPENAMEGRAMMAR

10

11 #include <s t r i ng>

12 #include <sstream>

13

14 #include ”GrammarUtility . h”

15

16 using std : : s t r i n g ;

17 using namespace boost : : s p i r i t : : c l a s s i c ;

18

19 class TypeNameGrammar : public grammar<TypeNameGrammar> {
20 public :

21 typedef p o s i t i o n i t e r a t o r <const char∗> i t e r a t o r t ;

22 typedef n o d e i t e r d a t a f a c t o r y<int> f a c t o r y t ;

23

24 template <typename ScannerT>

25 class d e f i n i t i o n {
26 public :

27 typedef ScannerT scanne r t ;

28 d e f i n i t i o n (TypeNameGrammar const& s e l f ) {
29 typeName

30 = lexeme d [ token node d [ ( ( a lpha p | ’ ’ ) >> ∗( alnum p | ’ ’ ) ) ] ]

31 //>> ! ( no node d [ ch p ( ’< ’) ] >> l i s t p ( typeName , no node d [ ch p ( ’ , ’ ) ] ) >> no node d [ ch p ( ’> ’) ] )
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32 >> ∗ s t r p ( ” [ ] ” )

33 ;

34

35 }
36

37 ru le<scanner t , pa r s e r tag<type tag> > const& s t a r t ( ) const {
38 return typeName ;

39 }
40

41 private :

42 ru le<scanner t , pa r s e r tag<type tag> > typeName ;

43 } ;

44

45 } ;

46

47 #endif

Listing A.6: LiteralGrammar.h

1 /∗
2 ∗ JologGrammar . h

3 ∗
4 ∗ Created on : 2/08/2009

5 ∗ Author : t imothyc

6 ∗/
7

8 #ifndef JOLOGGRAMMAR

9 #define JOLOGGRAMMAR

10

11 #include <s t r i ng>

12 #include <sstream>

13 #include <c s t r i ng>

14

15 #include ”GrammarUtility . h”

16 #include ”LiteralGrammar . h”

17 #include ” Ident i f ierGrammar . h”
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18 #include ”TypeNameGrammar . h”

19 #include ”ExpressionGrammar . h”

20 #include ”StatementGrammar . h”

21 #include ”SkipGrammar . h”

22

23 using std : : s t r i n g ;

24 using namespace boost : : s p i r i t : : c l a s s i c ;

25

26 class JologGrammar : public grammar<JologGrammar> {
27 public :

28 typedef p o s i t i o n i t e r a t o r <const char∗> i t e r a t o r t ;

29 typedef n o d e i t e r d a t a f a c t o r y<int> f a c t o r y t ;

30

31 template <typename ScannerT>

32 class d e f i n i t i o n {
33 public :

34 typedef ScannerT scanne r t ;

35 d e f i n i t i o n ( JologGrammar const& s e l f ) :

36 exp r e s s i on ( s e l f . getErrorReporter ( ) ) , statement ( s e l f . getErrorReporter ( ) ) {
37

38 j o l o g f i l e

39 = ! j o l og package

40 >> ∗ j o l o g im po r t

41 >> ! j o l o g a g e n t

42 >> ( end p | ( lexeme d [ +anychar p ] [ s e l f . r epo r t ( f i l e t a g ) ] >> nothing p ) )

43 ;

44

45 jo l og package

46 = root node d [ s t r p ( ” package ” ) ]

47 >> ( lexeme d [ l i s t p (

48 token node d [ +(alnum p | ’ ’ ) ] ,

49 no node d [ ch p ( ’ . ’ ) ]

50 ) ]

51 | e r r o r [ s e l f . r epo r t ( package tag ) ]
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52 )

53 >> ( no node d [ ch p ( ’ ; ’ ) ] | e r r o r [ s e l f . r epo r t ( exp r e s s i on s t a t ement tag ) ] )

54 ;

55

56 j o l og i mpo r t

57 = root node d [ s t r p ( ” import ” ) ]

58 >> ( lexeme d [ l i s t p (

59 token node d [ +(alnum p | ’ ’ | ’∗ ’ ) ] ,

60 no node d [ ch p ( ’ . ’ ) ] )

61 ]

62 | e r r o r [ s e l f . r epo r t ( import tag ) ]

63 )

64 >> ( no node d [ ch p ( ’ ; ’ ) ] | e r r o r [ s e l f . r epo r t ( exp r e s s i on s t a t ement tag ) ] )

65 ;

66

67 j o l o g a g e n t

68 = ∗ p r e f i x >> s t r p ( ” agent ” )

69 >> ( typeName | e r r o r [ s e l f . r epo r t ( type tag ) ] )

70 >> ( ∗( implements | extends )

71 >> no node d [ ch p ( ’{ ’ ) ] // | ( er ror [ s e l f . r e p o r t ( c l a s s t a g ) ] /∗>> not h ing p ∗/))

72 >> ∗( j o l o g a g e n t c o n t e n t s ) // | ((+( error − ’} ’ ) ) [ s e l f . r e p o r t ( c l a s s t a g ) ] ) )

73 >> no node d [ ch p ( ’} ’ ) ] )

74 | e r r o r [ s e l f . r epo r t ( agent tag ) ]

75 ;

76

77 implements

78 = root node d [ s t r p ( ” implements ” ) ] >> ( typeName | e r r o r [ s e l f . r epo r t ( implements tag ) ] ) ;

79

80 extends

81 = root node d [ s t r p ( ” extends ” ) ] >> ( typeName | e r r o r [ s e l f . r epo r t ( extends tag ) ] ) ;

82

83 j o l o g a g e n t c o n t e n t s

84 = a c t i o n d e f i n i t i o n

85 | f u n c t i o n d e f i n i t i o n
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86 | f l u e n t d e f i n i t i o n

87 | lexeme d [ +(anychar p − ’} ’ − e o l p ) ] [ s e l f . r epo r t ( ag en t con t en t s t ag ) ]

88 ;

89

90 a c t i o n d e f i n i t i o n

91 = ∗ p r e f i x

92 >> ( s t r p ( ” pr im act ion ” ) | ” exog ac t i on ” | ” s e n s i n g a c t i o n ” )

93 //we e i t h e r have a p a t t e r n ( f o r e x o g a c t i o n s ) or a f u n c t i o n : name( args ) ( f o r p r i m a c t i o n s )

94 >> ( ( ( r eg ex pa t t e rn

95 | ( i d e n t i f i e r

96 >> no node d [ ch p ( ’ ( ’ ) ]

97 >> ! l i s t p ( pa ramet e r de f i n i t i on , no node d [ ch p ( ’ , ’ ) ] )

98 >> no node d [ ch p ( ’ ) ’ ) ] )

99 )

100 // >> ( ( no node d [ ch p ( ’ ( ’ ) ] >> ! l i s t p ( p a r a m e t e r d e f i n i t i o n , no node d [ ch p ( ’ , ’ ) ] ) >> no node d [ ch p ( ’ ) ’ ) ] ) ) // | ( er ror [ s e l f . parameter error ] >> no th in g p ))

101 >> no node d [ ch p ( ’{ ’ ) ]

102 >> ∗( ( ” p o s s i b l e ”

103 >> ( exp r e s s i on | e r r o r [ s e l f . r epo r t ( a c t i o n d e f i n i t i o n t a g ) ] )

104 >> ( no node d [ ch p ( ’ ; ’ ) ] | e r r o r [ s e l f . r epo r t ( exp r e s s i on s t a t ement tag ) ] )

105 )

106

107 | ( ” s e t ”

108 >> ( exp r e s s i on | e r r o r [ s e l f . r epo r t ( a c t i o n d e f i n i t i o n t a g ) ] )

109 //>> ( no node d [ ch p ( ’= ’) ] | error [ s e l f . r e p o r t ( a c t i o n d e f i n i t i o n t a g ) ] )

110 //>> ( e x p r e s s i o n | error [ s e l f . r e p o r t ( a c t i o n d e f i n i t i o n t a g ) ] )

111 >> ! ( s t r p ( ” i f ” ) >> exp r e s s i on )

112 >> ( no node d [ ch p ( ’ ; ’ ) ] | e r r o r [ s e l f . r epo r t ( exp r e s s i on s t a t ement tag ) ] )

113 )

114

115 | ( ” send ”

116 >> ( statement | e r r o r [ s e l f . r epo r t ( a c t i o n d e f i n i t i o n t a g ) ] )

117 )

118

119 | ( ” re turn ”
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120 >> ( exp r e s s i on | e r r o r [ s e l f . r epo r t ( a c t i o n d e f i n i t i o n t a g ) ] )

121 >> ( no node d [ ch p ( ’ ; ’ ) ] | e r r o r [ s e l f . r epo r t ( exp r e s s i on s t a t ement tag ) ] )

122 )

123 )

124 >> ( no node d [ ch p ( ’} ’ ) ] | e r r o r [ s e l f . r epo r t ( a c t i o n d e f i n i t i o n t a g ) ] )

125 )

126 | e r r o r [ s e l f . r epo r t ( a c t i o n d e f i n i t i o n t a g ) ]

127 )

128 ;

129

130 f l u e n t d e f i n i t i o n

131 = ∗ p r e f i x >> typeName

132 >> i d e n t i f i e r

133 >> ! ( no node d [ ch p ( ’ ( ’ ) ]

134 >> ! l i s t p ( expres s i on , no node d [ ch p ( ’ , ’ ) ] )

135 >> no node d [ ch p ( ’ ) ’ ) ]

136 ) // | ( er ror [ s e l f . v a r i a b l e e r r o r ] /∗>> no th in g p ∗/))

137 >> ! ( ’= ’ >> ( i n i t i a l i s e r | ( e r r o r [ s e l f . r epo r t ( e x p r e s s i o n t a g ) ] /∗>> no th ing p ∗/ ) ) )

138 >> ( no node d [ ch p ( ’ ; ’ ) ] | eps p [ s e l f . r epo r t ( exp r e s s i on s t a t ement tag ) ] )

139 ;

140

141 f u n c t i o n d e f i n i t i o n

142 = ! pr ivacy >> ∗ p r e f i x >> typeName >> i d e n t i f i e r

143 >> ( ( no node d [ ch p ( ’ ( ’ ) ] >> ! l i s t p ( pa ramet e r de f i n i t i on , no node d [ ch p ( ’ , ’ ) ] ) >> no node d [ ch p ( ’ ) ’ ) ] ) ) // | error [ s e l f . r e p o r t ( p a r a m e t e r d e f i n i t i o n t a g ) ] )

144 >> no node d [ ch p ( ’{ ’ ) ]

145 >> ∗( statement )

146 >> ( no node d [ ch p ( ’} ’ ) ] | e r r o r [ s e l f . r epo r t ( s cope tag ) ] )

147 ;

148

149 p a r a m e t e r d e f i n i t i o n

150 = ∗( s t r p ( ” t r a n s i e n t ” ) ) >> typeName >> i d e n t i f i e r ;

151

152 p r e f i x

153 = s t r p ( ” f i n a l ” ) | ” s t a t i c ” | ” abs t r a c t ” ;
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154

155 i n i t i a l i s e r

156 = ( root node d [ ch p ( ’{ ’ ) ] >> i n f i x n o d e d [ ! l i s t p ( i n i t i a l i s e r , ’ , ’ ) ] >> ( no node d [ ch p ( ’} ’ ) ] | ( e r r o r [ s e l f . r epo r t ( i n i t i a l i s e r t a g ) ] /∗>> no th in g p ∗/ ) ) )

157 | exp r e s s i on ; // zero a l l o w e d ?

158

159 pr ivacy

160 = s t r p ( ” pub l i c ” ) | ” p r i va t e ” | ” protec ted ” ;

161

162 r egex pa t t e rn //TODO do we want to use escapes ? to a l l o w ” f o r example !

163 = no node d [ ch p ( ’ ” ’ ) ] >> token node d [ lexeme d [ ∗( anychar p − ’ ” ’ ) ] ] >> no node d [ ch p ( ’ ” ’ ) ] ;

164

165 e r r o r

166 //= lexeme d [ +anychar p ]

167 //= ( anychar p − space p )

168 //= token node d [ ( +(alnum p | ’ ’ ) | ( ( ch p ( ’ [ ’ ) | ’{ ’ | ’ ( ’ ) /∗>> ∗( ch p ( ’ ] ’ ) | ’} ’ | ’ ) ’ )∗/ ) | anychar p ) ]

169 = token node d [ +(alnum p | space p | ’ ’ )

170 | ( ( ! ( ch p ( ’ [ ’ ) | ’{ ’ | ’ ( ’ ) ) >> ∗( anychar p − ( ch p ( ’ ] ’ ) | ’} ’ | ’ ) ’ ) ) >> ( ch p ( ’ ] ’ ) | ’} ’ | ’ ) ’ ) )

171 ]

172 ;

173 }
174

175 ru le<scanner t , pa r s e r tag<f i l e t a g > > const& s t a r t ( ) const {
176 return j o l o g f i l e ;

177 }
178

179 private :

180 LiteralGrammar l i t e r a l ;

181 Ident i f ierGrammar i d e n t i f i e r ;

182 ExpressionGrammar exp r e s s i on ;

183 StatementGrammar statement ;

184 TypeNameGrammar typeName ;

185

186 ru le<scanner t , pa r s e r tag<f i l e t a g > > j o l o g f i l e ;

187 ru le<scanner t , pa r s e r tag<package tag> > j o l og package ;
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188 ru le<scanner t , pa r s e r tag<import tag> > j o l o g im po r t ;

189 ru le<scanner t , pa r s e r tag<agent tag> > j o l o g a g e n t ;

190 ru le<scanner t , pa r s e r tag<implements tag> > implements ;

191 ru le<scanner t , pa r s e r tag<extends tag> > extends ;

192 ru le<scanner t , pa r s e r tag<agent content s tag> > j o l o g a g e n t c o n t e n t s ;

193 ru le<scanner t , pa r s e r tag<a c t i o n d e f i n i t i o n t a g> > a c t i o n d e f i n i t i o n ;

194 ru le<scanner t , pa r s e r tag<f l u e n t d e f i n i t i o n t a g > > f l u e n t d e f i n i t i o n ;

195 ru le<scanner t , pa r s e r tag<f u n c t i o n d e f i n i t i o n t a g> > f u n c t i o n d e f i n i t i o n ;

196 ru le<scanner t , pa r s e r tag<p a r a m e t e r d e f i n i t i o n t a g> > p a r a m e t e r d e f i n i t i o n ;

197 ru le<scanner t , pa r s e r tag<pr ivacy tag> > pr ivacy ;

198 ru le<scanner t , pa r s e r tag<p r e f i x t a g> > p r e f i x ;

199 ru le<scanner t , pa r s e r tag<s t r i n g t a g> > r eg ex pa t t e rn ;

200 ru le<scanner t , pa r s e r tag< i n i t i a l i s e r t a g > > i n i t i a l i s e r ;

201

202 ru le<scanner t , pa r s e r tag<e r r o r t a g> > e r r o r ;

203 } ;

204

205 JologGrammar ( std : : ostream& stder r , bool& er ro rF lag ) :

206 s t d e r r ( s t d e r r ) , e r r o rF lag ( e r r o rF lag ) {}
207

208 ErrorMessage getErrorReporter ( ) const {
209 return ErrorMessage ( f i l e t a g , s tde r r , e r r o rF lag ) ;

210 }
211

212 ErrorMessage r epor t ( ParserTags tag ) const {
213 return ErrorMessage ( tag , s tde r r , e r r o rF lag ) ;

214 }
215

216 t r e e p a r s e i n f o<i t e r a t o r t , f a c t o r y t> par s eS t r i ng ( const char∗ s , s t r i n g f i l ename ) {
217 i t e r a t o r t begin ( s , s+s t r l e n ( s ) , f i l ename ) ;

218 i t e r a t o r t end ;

219 SkipGrammar sk ip ;

220 return as t pa r s e<f a c t o r y t >(begin , end , ∗ this , s k ip ) ;

221 }
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222

223 private :

224 std : : ostream& s t d e r r ;

225 bool& er ro rF lag ;

226 } ;

227

228 #endif

Listing A.7: SkipGrammar.h

1 /∗
2 ∗ SkipGrammar . h

3 ∗
4 ∗ Created on : 2/08/2009

5 ∗ Author : t imothyc

6 ∗/
7

8 #ifndef SKIP GRAMMAR

9 #define SKIP GRAMMAR

10

11 #include <s t r i ng>

12 #include <sstream>

13

14 #include ”GrammarUtility . h”

15

16 class SkipGrammar : public grammar<SkipGrammar> {
17 public :

18 template <typename ScannerT>

19 class d e f i n i t i o n {
20 public :

21 typedef ScannerT scanne r t ;

22 d e f i n i t i o n ( SkipGrammar const& s e l f ) {
23 sk ip

24 = +space p

25 | comment p ( ”//” )

26 | comment p ( ”/∗” , ”∗/” )
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27 ;

28

29 }
30

31 ru le<scanner t , pa r s e r tag<sk ip tag> > const& s t a r t ( ) const {
32 return sk ip ;

33 }
34

35 private :

36 ru le<scanner t , pa r s e r tag<sk ip tag> > sk ip ;

37 } ;

38

39 } ;

40

41 #endif
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Appendix B

Jasmin Syntax

Class definition

.class full/package/name/classname

Where to put the output class; the slash-separated package name corresponds to the directory

structure as per the Java-paradigm.

comment

\s ; . . . \n (that is: whitespace semicolon comment newline)

A comment, that will not appear in the bytecode. Note that comments must be preceded by

whitespace and extend to the end of line.
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directive

.directive

Meta information for the JVM; not part of user code. The available directives are:

• .catch add exception handler to a range of code

• .class for defining Java classes (described above)

• .end end a class or method definition

• .field define a class variable

• .implements specify an interface that the enclosing class definition implements

• .interface for defining Java interfaces (counterpart to .class)

• .limit assert limits on the enclosing function (for the JVM’s benefit)

• .line correlate bytecode instructions with source line numbers to help debuggers

• .method define a class method

• .source the source file used to produce this assembly

• .super specify the super class of the enclosing class

• .throws declare that the enclosing function may throw exceptions

• .var define a local variable’s name and scope (to help out debuggers)

function call

invokevirtual package/class/method(arguments)return

Make (invoke) a (virtual/polymorphic) function call.

load field from class

getfield package/class/field type

Push class instance field value onto stack.
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load static field

getstatic package/class/field type

Push static class field value onto stack.

instruction

instruction [parameters]

Java mnemonics.

label

name:

A named location; the target of jump and branch statements. May not start with a digit, cannot

contain the symbols ‘=’, ‘:’, ‘.’, ‘”’ or ‘-’. Labels can only be declared inside method definitions,

which they are local to.

local variable space

.limit locals number

The maximum number of local variables and function parameters that the current method can

hold on the stack. Larger datatypes (long, double) count as two.

operand space

.limit stack number

The maximum number of bytecode operands (instructions) that the current method can hold on

the stack at any one time. Instructions are one byte, as are most types. Larger datatypes (long,

double) count as two.

store field from class

putfield package/class/field type

Pop value off stack and store in a class instance field.

store static field

putstatic package/class/field type

Pop value off stack and store in a static class field.
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source file

.source classname.java

The source file (for debugging support). Use the plain source name without any package/directory

prefixes (use String.java, not java/lang/String.java).

statement

directive | instruction | label

The body of each Jasmin function definition is populated with zero or more ‘statements’ – JVM

directives, literal instructions or labelled points in code.
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Appendix C

Boost::spirit Syntax

Boost::spirit is a parser library that operates on the idea of ‘parsers’ – small objects that can

recognise simple regular expressions. For example, an int p parser recognises an unbroken sequence

of digits, while a str p parser will recognise a specific user-provided string of characters. These

simple parsers can then be combined into much larger and more sophisticated parsers via special

operators for sequences, non-deterministic iteration (Kleene star) or non-deterministic selection,

amongst others. These operators have been chosen such that they resemble those found in extended

Backus-Naur form – a formal grammar notation – and are also available for user-overloading.

An older but more complete version of boost::spirit was used for this thesis due to issues with

availability and documentation. This version is now known as spirit classic. A newer version of

spirit called V 2 will eventually supercede this implementation. However installation candidates

are still uncommon and documentation is too sparse for it to have been worth considering. At

the time of writing, the classic documentation was sufficient to produce a working parser, though

some experimentation was required.

C.1 Parsers

There are several primitive parsers available as part of the spirit distribution. The most useful

ones are introduced here:

• space p: matches one whitespace character (space, tab, newline, . . . ) in the input text

• alpha p: matches one alphabetic character in the input text

• alnum p: matches one alphanumeric character in the input text
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• ch p(c): matches c in the input text

• str p(userString): matches userString in the input text

• int p: matches an integer in the input text

• eps p: always matches, but doesn’t match against anything. This parser is most useful for

triggering semantic actions for error reporting.

• nothing p: never matches (forces this branch to fail and the parser to backtrack)

• comment p(marker): matches input text between marker and the end of the current line

• comment p(start, end): matches input text between start and end (possibly across multiple

lines)

• list p(a, b): matches a list of a parsers interleaved by b parsers, for example ababa but not

abb. This is a convenience parser that can be handwritten as: a >> ∗(b >> a)

Further discussion of these parsers is left to the spirit documentation, which is reasonably complete

on this topic.

C.2 Operators

Boost::spirit provides operators for combining parsers. Many of these operators resemble regular

expression operators:

• ! for zero or one

• ∗ for zero or more

• + for one or more

Of more interest are the >> and | operators. The >> operator is used for matching a sequence

of parsers. For example, a >> b matches some input text if a matches the first section and b

matches the rest. Meanwhile the ‘or’ operator | allows spirit to try one parser, and then try an

alternative if that fails. For example:

ch p(′a′) | ′b′ | ′c′

which will match either the character ‘a’, ‘b’ or ‘c’ depending on the input text.
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Finally, attention is directed to the ‘ch p’ prefix; boost::spirit overloads most parsers so that

they will accept other parsers. However this requires at least one spirit parser1. Ch p is one such

parser – which overloads the | operator – and is capable of accepting literal characters as if they

were also ch p parsers. This notation is sugar2 for the more explicit:

ch p(′a′) | ch p(′b′) | ch p(′c′)

C.3 Grammars

Parsers are useful for building up larger parsers which can be assigned to ‘rules’. Rules can in turn

talk about each other. For example, a simplified subset of the Jolog grammar appears as:

identifier = (alpha p | ′ ′) >> ∗(alnum p | ′ ′);

typeName = identifier;

variable definition = typeName >> identifier >> !(′=′ >> expression);

However too many rules forces the spirit-based components of a program to take a long time

to compile. The solution is to wrap related groups of rules into ‘grammars’. Grammars can then

be used within rules as before, such as the use of expression in the above example.

Grammars are created in dedicated classes; the boilerplate for an example grammar may appear

as:

Listing C.1: an example boost::spirit grammar

1 class ExampleGrammar : public grammar<ExampleGrammar> {
2 public :

3 template <typename ScannerT>

4 class d e f i n i t i o n {
5 public :

6 d e f i n i t i o n (ExampleGrammar const& s e l f ) {
7 // d e f i n i t i o n o f r u l e s

8 exampleRule = s t r p ( ”example” ) >> otherGrammar ;

1This is due to ‘limitations’ in C++ overloading: you cannot overload operator|(char, char) but you can overload
operator|(myParser, char).

2Indeed those who have an aversion to excessive operator overloading may view this as a little too sweet for their
tastes.
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9

10 }
11

12 // what r u l e does t h i s grammar correspond to

13 ru le<scanner t , pa r s e r tag<example tag> > const& s t a r t ( ) const {
14 return exampleRule ;

15 }
16

17 private :

18 //we need to s t o r e o ther grammars i f we use them

19 MyOtherGrammar otherGrammar ;

20

21 // type d e f i n i t i o n s f o r each r u l e

22 ru le<Scanner t , pa r s e r tag<example tag> > exampleRule ;

23 } ;

24 } ;

Note in particular that our class (ExampleGrammar) is simply a shell for a required inner class

called definition (whose constructor expects a reference to our outer class). Note also that our

class extends the spirit class grammar which is also parameterised in terms of our own shell class.

The implications of this bizarre inheritance hierarchy are unimportant for our purposes – they are

simply an artifact of the metatemplate implementation. However the implications of debugging

simple errors in this setup manifest themselves in hundreds of lines of error output3.

C.4 Skip Grammar

These simple rules are fine for examples, but a Java-like grammar is a large, complicated beast

and error checking obfuscates this further. The task of adding whitespace independence to the

grammar appears daunting in this light. Boost::spirit, however, provides a convenient solution to

this problem: rather than adding a rule such as ∗space p between every other rule, we can instead

provide a ‘skip’ grammar to the parsing function.

We have already seen a simple skip grammar: ∗space p. A more complicated C -like parser can

3This is no exaggeration. Accidental omission of a semicolon or a function parameter can literally produce an
error message that spans several screens.
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be constructed by adding support for comments with the comment p parser:

∗(space p | comment p(“//”) | comment p(“/*”, “*/”))

The above rule can be provided directly to the parsing function:

ast parse(begin, end, main grammar, ∗(space p | comment p(“//”) | comment p(“/*”, “*/”)))

Alternatively, we can encapsulate the above rule inside a proper spirit grammar. The grammar

itself can then be provided to the parse function in place of the above rule:

ast parse(begin, end, main grammar, skip grammar)

C.5 Directives

After going to the effort of essentially turning whitespace off, we may find ourselves in a situation

where whitespace is particularly important – inside a string literal or between digits in a number

for example. In these cases we want to explicitly indicate that whitespace cannot occur (or occur in

quantities that we accept by explicitly adding a space p parser). We can achieve this by wrapping

our subrule within a lexeme d directive, which disables the skip grammar within its bounds. A

correct implementation of the above ‘identifier’ rule may then appear as:

identifier = lexeme d[ (alpha p | ′ ′) >> ∗(alnum p | ′ ′) ];

Two other important directives are used for structuring abstract syntax trees: the root node d

directive indicates that its contents will become the root of the current subtree, token node d

ensures that its contents become a single child of the current subtree (or the root if no competitors

exist!) and no node d instructs spirit to match its parser against the input text, but to discard

the match rather than add it to the AST. The root node d and no node d have obvious uses in

structuring the tree to a more useful form for later use. The token node d is a little more subtle:

it is most useful when used to wrap a lexeme d directive since it will join the individual characters

that lexeme d returns into a proper string with specific whitespace properties. This means that

an AST node for a string literal can be a single node, rather than a parent node with one child for

each character.
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